MET - Mechanical Engineering Technology
Computer based drafting methods are taught with a major emphasis on 'Hands On' practice using 2-D AutoCAD software in the computer lab, along with the various methods of editing, manipulation, visualization and presentation of technical drawings. This course includes the basic principles of engineering drawing/hand sketching, dimensioning and tolerancing.
Application and characteristics, both physical and chemical, of the materials most commonly used in industry as well as procedures and processes used in converting raw materials into a finished product.
A laboratory course dealing with the standard methods of inspecting and testing materials used in engineering applications with emphasis on laboratory reports, including presentation and interpretation of experimental data.
Study of selected topics.
The basic laws of thermodynamics, properties of fluids, heat, and work and their applications in processes and cycles and an introduction to conduction heat transfer.
A fundamental treatment of coplanar and three-dimensional kinematics and kinetics of particles and rigid bodies, including relative motion, mass moment of inertia, Newton's laws, work and energy and impulse and momentum.
Practical analyses of fundamental machine elements such as shafts, springs, and screws. Fundamental principles required for the correct design of the separate elements which compose the machine with attention given to problems of synthesis and the interrelationships of the design of elements within the sub-assembly. Topics include stress analysis of screws, belts, clutches, brakes, chains and thin and thick cylinders, and lubrication and bearings
The study of fluid statics and dynamics, including momentum, energy, Bernoulli's equation, laminar and turbulent fluid flow and friction in pipes, fluid machinery, and open-channel flow.
A laboratory course dealing with the verification of fluid equations and principles and the characteristics of fluid machinery with emphasis on presentation and interpretation of experimental data.
A study of conduction, convection and radiation heat transfer and heat exchangers. Emphasis is on applications and problem solving using current techniques, and modern correlations.
A study of the applications of thermodynamics. Topics include the basic steam and gas turbine power cycles, internal combustion engines, introduction to refrigeration systems, gas mixtures, and psychrometrics applied to air conditioning processes.
Experiments dealing with applied thermodynamics, mechanical power and energy systems with emphasis on laboratory report writing, including presentation and interpretation of experimental data.
May be repeated for credit. Available for pass/fail grading only. Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and the Career Development Services program prior to the semester in which the work experience is to take place. (offered fall, spring, summer)
Available for pass/fail grading only. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience.
Available for pass/fail grading only.
Study of selected topics.
Study of selected topics.
A study of the integrated modeling and optimal design of a physical system, which includes sensors, actuators, electronic components, and its embedded digital control system. Includes simultaneous optimal design practice with respect to the realization of the design specifications related to different engineering domains.
Fundamental principles required for the correct design of the separate elements which compose the machine with attention given to problems of synthesis and the interrelationships of the design of elements within the sub-assembly. Topics include stress analysis of screws, belts, clutches, brakes, chains and thin and thick cylinders, and lubrication and bearings.
The course provides foundations, principles, methods, and tools for modeling and simulation of electro-mechanical components and systems using appropriate modeling techniques. The course is focused on the multi-body dynamics systems, fluid, hydraulic, and electrical systems.
A study of the application of thermodynamics to power plants, engines, compressors, turbines, and associated systems. A detailed study is made of fossil fuel power plants with an introductory study of nuclear power and other energy conversion systems.
The design and application of refrigeration and air conditioning systems. Studies are made of compressors, condensers, evaporators, psychometric processes, load calculations and air distribution systems. High performance vapor compression systems, absorption systems and other cycles are analyzed.
Reactor physics principles as applied to the design and operation of various types of commercial nuclear power reactors. Topics include sources of radiation and interaction with matter, neutron interactions, diffusion theory, and reactor kinetics.
Complete study of the nuclear fuel cycle, from mining through fabrication, fuel management in an operating commercial power reactor, spent fuel management, and fuel reprocessing, with emphasis on chemical engineering considerations.
This course includes: fundamental principles of naval architecture including nomenclature, geometry, stability, hydrostatics, structures, and motions; ship design processes; and a basic introduction to shipboard systems such as HVAC, refrigeration, power generation, propulsion, hydraulics, electronics, cargo handling systems, seawater systems, freshwater systems, and fuel, lube and other oil systems.
This course builds upon MET 475 and provides a more in-depth look on how the marine shipbuilding industry is using various software including SIEMENS PLM, 3D CAD modeling and new technologies like laser scanners and augmented reality to reshape the future of shipbuilding, maintenance, and repair processes. Focus will be based on model-based learning and creating a 'digital thread' of information. Students will practice what they learn on shipbuilding concepts using commercial software that is widely used across automotive, aerospace, and marine industries.
A study of the fundamental principles and performance characteristics of spark ignition and diesel internal combustion engines. Overview of engine types and their operation, engine design and operating parameters; ideal and semi-empirical models of engine cycles; combustion, fluid flow and thermal considerations in engine design and performance. Laboratory evaluation of engine performance using flow and dynamometer systems. (cross-listed with MAE 477/MAE 577)
This course looks at maintenance systems: predictive, preventative and corrective; large scale maintenance systems, principles of reliability engineering, maritime logistics; planning for maintenance and repair, using and ordering spare parts, technical manuals, system specifications, and shipyard operations.
Study of selected topics.
Study of selected topics.