Electrical and Computer Engineering

Web Site: http://www.odu.edu/ece (http://www.odu.edu/ece/)

Oscar González, Chair

The Department of Electrical and Computer Engineering offers undergraduate four-year degree programs leading to the Bachelor of Science in Electrical Engineering and the Bachelor of Science in Computer Engineering. These programs are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. The undergraduate programs provide a broad foundation in electrical and/or computer engineering through combined lecture and laboratory work and prepare the student for entering the profession of electrical and/or computer engineering. In addition, these programs prepare the students for further study at the graduate level.

The department also offers programs of graduate study leading to the degrees of Master of Engineering, Master of Science, Doctor of Engineering, and Doctor of Philosophy. Faculty members in electrical and computer engineering are actively engaged in research, and the department maintains extensive laboratory facilities to support the research work. Areas of specialization include biomedical engineering, bioelectronics, plasmas, microelectronics/nanotechnology, photovoltaics, atomic layer deposition, laser processing, multivariable systems/nonlinear control, computational intelligence and machine vision, signal and image processing, modeling/simulation/visualization, medical modeling, computer hardware, computer networks, and communications.

Students majoring in either electrical engineering or computer engineering may fulfill the upper-level General Education requirements through completion of a minor in the other discipline. Computer engineering students automatically meet this requirement with the built-in minor in computer science.

Mission Statement

The Department of Electrical and Computer Engineering at Old Dominion University is a partnership among students, faculty and staff in Service to the profession of Electrical and computer engineering through academic excellence, Research and real-world experiences, dedicated to a Vision of the future that includes Industry and community, Continuous improvement, and Personal Enrichment and growth (SERVICE).

Bachelor of Science in Electrical Engineering

Vishnu K. Lakdawala, Chief Departmental Advisor

The electrical engineering undergraduate curriculum begins with a solid foundation in math, science, English, circuits, signals and linear systems, electronics, electromagnetics, digital systems, and microelectronics. Adequate elective freedom is available to the student to allow specialization in one or more of the five concentration areas: systems and automation engineering, physical electronics, computer hardware systems, power and renewable energy, or data analytics engineering. Emphasis is placed on understanding principles through theoretical investigation and experimental verification. In addition, course work in General Education Skills and Ways of Knowing is required to assure a well-rounded program of study.

Students pursuing a BSEE degree are intended in their degree until Engineering Fundamental/foundational courses (i.e., Calculus I & II, Calculus-based University Physics I, Programming I, Chemistry I & II, and Engineering introductory courses) are completed.

Electrical Engineering Program Educational Objectives

The electrical engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study
2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges

Student Outcomes

The electrical engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Accreditation

The Bachelor of Science in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. (http://www.abet.org)

Four-Year Plan - Electrical Engineering (BSEE)

The four-year plan is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Electrical Engineering Four-Year Plan* (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/electricalengn-bsee-fouryearplan/)

<table>
<thead>
<tr>
<th>Freshman</th>
<th></th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td></td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>1</td>
<td>MATH 212</td>
<td>4</td>
</tr>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>PHYS 231N</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C</td>
<td>3</td>
<td>ENGN 150</td>
<td>4</td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td></td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>MATH 307 or 280</td>
<td>3</td>
<td>ECE 202</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>3</td>
<td>ECE 287</td>
<td>2</td>
</tr>
</tbody>
</table>

*The four-year plan is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.
Any ECE course registration issues are to be resolved with the ECE level ECE courses prior to taking the next course in the sequence.

Electrical engineering majors must earn a grade of C or better in all 200-level courses selected from one of two options: (1) four 400-level ECE technical elective courses and one 300-level ECE technical elective course or one approved 300- or 400-level CS/MATH/Engineering course.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major.

Electrical engineering majors must earn a grade of C or better in all 200-level ECE courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

Electrical Engineering Program Concentration Areas

Concentrations are designed to align with the student's major and/or technical electives requirements for the BSEE degree. A concentration will be posted on the transcript, which will show a focus in one or more of the following areas.

The systems and automation engineering concentration requires completion of four courses selected from the following: ECE 381, ECE 451, ECE 455, ECE 458, and ECE 461.

The physical electronics concentration requires completion of four courses selected from the following: ECE 403, ECE 454, ECE 464, ECE 471, ECE 472, ECE 473, and ECE 474.

The computer hardware systems concentration requires completion of four courses selected from the following: ECE 341, ECE 346, ECE 441, ECE 443, and ECE 483.

The power and renewable energy concentration requires completion of four courses selected from the following: ECE 303, ECE 403, ECE 404, ECE 405, ECE 408, ECE 461, and ECE 471.

The data analytics engineering concentration requires completion of the following four courses: ECE 346, ECE 350, ECE 445, and ECE 450.

Electrical Engineering Double Degree/Major Options

- Electrical Engineering (BSEE) Dual Major/Degree with Computer Engineering Major (BSCOME) Four-Year Plan (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/electricalengn-dualdegree-eece-bs-fiveyearplan/)
- Electrical Engineering (BSEE) & Physics Concentration D (BS) Five-Year Plan (http://catalog.odu.edu/undergraduate/collegeofsciences/physics/physics-dualdegree-ee-bs-fiveyearplan/)

Bachelor of Science in Computer Engineering

Vishnu K. Lakdawala, Chief Departmental Advisor
Lee Belfore, Computer Engineering Undergraduate Program Director

The computer engineering undergraduate degree program, available in both synchronous online and face-to-face formats, is designed to provide both a broad engineering background and a comprehensive foundation in the technical principles underlying the computer area. Students develop a background through course work in mathematics, the basic sciences, and general engineering. The technical core consists of course work from electrical engineering to address hardware aspects of computer engineering and course work from computer science to address software aspects. There are two majors available in the Bachelor of Science in Computer Engineering degree: Computer Engineering major and Modeling & Simulation Engineering major. Adequate elective freedom is available to students in each major. The Computer Engineering major has a built-in minor in computer science, and four technical electives allow for specialization in one or more of four concentration areas: computer hardware systems, computer networks, cyber security, or data analytics engineering. The Modeling and Simulation Engineering major allows students to select three technical elective courses. In addition, course work in General Education Skills and Ways of Knowing is required to assure a well-rounded program of study.
Students pursuing a BSCOME degree are intended in their degree until Engineering Fundamental/foundational courses (i.e., Calculus I & II, Calculus-based University Physics I, Programming I, Chemistry I & II, and Engineering introductory courses) are completed.

Computer Engineering Program Educational Objectives

The computer engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study
2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges.

Student Outcomes

The computer engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Accreditation

The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. (http://www.abet.org)

Computer Engineering Major

Four-Year Plan - Computer Engineering Major (BSCOME)

The four-year plan is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Computer Engineering Major Four-Year Plan* (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/computerengn-bscome-fouryearplan/)

Freshman

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N or 120</td>
<td>4</td>
<td>MATH 211</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C</td>
<td>3</td>
<td>COMM 101R</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 307 or 280</td>
<td>3</td>
<td>ECE 202</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>3</td>
<td>ECE 287</td>
<td>2</td>
</tr>
<tr>
<td>ECE 241</td>
<td>4</td>
<td>CS 250</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 232N</td>
<td>4</td>
<td>CS 252</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 231C</td>
<td>3</td>
<td>CS 381</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 302</td>
<td>3</td>
<td>ECE 304</td>
<td>3</td>
</tr>
<tr>
<td>ECE 313</td>
<td>4</td>
<td>ECE 346</td>
<td>3</td>
</tr>
<tr>
<td>ECE 341</td>
<td>3</td>
<td>ECE 381</td>
<td>3</td>
</tr>
<tr>
<td>CS 361</td>
<td>3</td>
<td>CS 350</td>
<td>3</td>
</tr>
<tr>
<td>Human Creativity Way of Knowing</td>
<td>3</td>
<td>Technical Elective ***</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 484W</td>
<td>3</td>
<td>ECE 487</td>
<td>2</td>
</tr>
<tr>
<td>ECE 486</td>
<td>2</td>
<td>CS 471</td>
<td>3</td>
</tr>
<tr>
<td>ECE 443</td>
<td>3</td>
<td>Technical Elective ***</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective ***</td>
<td>3</td>
<td>Technical Elective ***</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 480</td>
<td>3</td>
<td>Human Behavior Way of Knowing</td>
<td>3</td>
</tr>
</tbody>
</table>

Interpreting the Past Way of Knowing

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 122N or 120</td>
<td>4</td>
<td>MATH 211</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C</td>
<td>3</td>
<td>COMM 101R</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credit hours: 128

* Does not include the University's General Education language and culture requirement. Additional hours may be required.

** CHEM 120 is for online program students only.

*** Computer Engineering major students need four technical elective courses selected from one of three options: (1) four 400-level ECE technical elective courses; (2) three 400-level ECE technical elective courses and one 300-level ECE technical elective course or one approved 300- or 400-level CS/MATH/Engineering course; (3) two 400-level ECE technical elective courses and one approved
The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a built-in minor in Computer Science.

Computer Engineering majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

Computer Engineering Major Concentration Areas

Concentrations are designed to align with the student's major and/or technical electives requirements for the BSCOME degree. A concentration will be posted on the transcript, which will show focus in one or more of the following areas.

The computer hardware systems concentration requires completion of four courses selected from the following: ECE 341, ECE 346, ECE 441, ECE 443, and ECE 483.

The computer networks concentration requires completion of the following four courses: ECE 355, ECE 451, ECE 452, and ECE 455.

The cyber security concentration area requires completion of four courses selected from the following: ECE 346, ECE 355, ECE 416, ECE 419, ECE 455, ECE 470, and ECE 483.

The data analytics engineering concentration requires completion of the following four courses: ECE 350, ECE 441, ECE 445, and ECE 450.

Computer Engineering Major Double Degree/Major Options

- Electrical Engineering (BSEE) Dual Major/Degree with Computer Engineering Major (BSCOME) Four-Year Plan (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/electricalengn-dualdegree-eceee-bsfiveyearplan/)
- Computer Engineering Major (BSCOME) Dual Degree with Computer Science (BSCS) Five-Year Plan (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/computerengn-dualdegree-cccs-bsfiveyearplan/)
- Computer Engineering Major (BSCOME) Dual Degree with Cyber Operations Major (BS Cybersecurity) Five-Year Plan (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/computerengn-dualdegree-cecyberops-bsfiveyearplan/)
- Computer Engineering Major (BSCOME) Dual Degree with Cybersecurity Major (BS Cybersecurity) Five-Year Plan (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/computerengn-dualdegree-cecyber-bsfiveyearplan/)

Modeling & Simulation Engineering Major

James Leathrum Jr., Program Advisor and Coordinator

Four-Year Plan - Modeling & Simulation Engineering Major (BSCOME)

- The four-year plan is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Modeling & Simulation Engineering Major Four-Year Plan* (http://catalog.odu.edu/undergraduate/frankbattencollegeofengineeringandtechnology/electricalcomputerengineering/computerengn-bscome-mse-fiveyearplan/)

<table>
<thead>
<tr>
<th>Freshman</th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 122N or 120**</td>
<td>1</td>
<td>MATH 212</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>PHYS 231N</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 110C</td>
<td>3</td>
<td>ENGN 150</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 307 or 280</td>
<td>3</td>
<td>ECE 202</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>3</td>
<td>ECE 287</td>
<td>2</td>
</tr>
<tr>
<td>ECE 241</td>
<td>4</td>
<td>CS 250</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 232N</td>
<td>4</td>
<td>CS 252</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 231C</td>
<td>3</td>
<td>CS 381</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 302</td>
<td>3</td>
<td>ECE 346</td>
<td>3</td>
</tr>
<tr>
<td>ECE 313</td>
<td>4</td>
<td>ECE 348</td>
<td>3</td>
</tr>
<tr>
<td>ECE 341</td>
<td>3</td>
<td>ECE 320</td>
<td>3</td>
</tr>
<tr>
<td>ECE 306</td>
<td>3</td>
<td>ECE 406</td>
<td>3</td>
</tr>
<tr>
<td>ECE 304</td>
<td>3</td>
<td>Interpreting the Past Way of Knowing</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 484W</td>
<td>3</td>
<td>ECE 487</td>
<td>2</td>
</tr>
<tr>
<td>ECE 486</td>
<td>2</td>
<td>Technical Elective ***</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective ***</td>
<td>3</td>
<td>Technical Elective ***</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 480</td>
<td>3</td>
<td>Human Behavior Way of Knowing</td>
<td>3</td>
</tr>
<tr>
<td>Human Creativity Way of Knowing</td>
<td>3</td>
<td>Upper-Division General Education course</td>
<td>3</td>
</tr>
</tbody>
</table>

*The four-year plan is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.
5 Electrical and Computer Engineering

Minor in Electrical Engineering

Vishnu K. Lakdawala, Chief Departmental Advisor

An undergraduate minor in electrical engineering may be obtained by successful completion of 12 or more semester credit hours of approved electrical or computer engineering or computer science course work at the 200, 300 or 400 level. In addition, a student seeking a minor in electrical engineering must satisfy all pre- or corequisite requirements for the courses selected. Tracks in systems science, physical electronics, digital design, and electrical power are available. The chief departmental advisor must approve the precise course of study. The basic course requirements for the three main tracks are as follows:

Systems Science Track

- ECE 202 Circuit Analysis II 3
- ECE 302 Linear System Analysis 3
- ECE 304 Probability, Statistics, and Reliability 3

Select one of the following: 3

- ECE 451 Communication Systems
- ECE 452 Introduction to Wireless Communication Networks
- ECE 455 Network Engineering and Design
- ECE 461 Automatic Control Systems

Total Hours 12

Physical Electronics Track

- ECE 323 Electromagnetics 3
- ECE 332 Microelectronic Materials and Processes 3

Select two of the following: 6

- ECE 454 Introduction to Bioelectronics
- ECE 464 Biomedical Applications of Low Temperature Plasmas
- ECE 471 Introduction to Solar Cells
- ECE 472 Plasma Processing at the Nanoscale
- ECE 473 Solid State Electronics
- ECE 474 Optical Fiber Communication

Total Hours 12

Digital Design Track

- ECE 241 Fundamentals of Computer Engineering 4
- ECE 341 Digital System Design 3
- ECE 346 Microcontrollers 3

Select one of the following: 3

- ECE 441 Advanced Digital Design and Field Programmable Gate Arrays
- ECE 443 Computer Architecture
- ECE 483 Embedded Systems

Total Hours 13

*The digital design track is not available for computer engineering majors and modeling and simulation engineering majors.

Electrical Power Track

- ECE 303 Introduction to Electrical Power 3
- ECE 323 Electromagnetics 3

Select two of the following: 6

- ECE 403 Power Electronics
- ECE 404 Electric Drives
- ECE 405 Power System Design & Analysis
- ECE 408 Fundamentals of Electric Vehicles
- ECE 461 Automatic Control Systems

Total Hours 13
For completion of a minor, a student must have a minimum overall cumulative grade point average of 2.00 in all courses specified as a requirement for the minor exclusive of lower-level courses, prerequisites and corequisites and complete at least six hours of upper-level courses in the minor requirement through courses offered by Old Dominion University. Completion of a minor in electrical engineering with a GPA of 3.00 or greater partially satisfies the leveling requirements for graduate degrees in electrical engineering.

Minor in Computer Engineering

Vishnu K. Lakdawala, Chief Departmental Advisor

An undergraduate minor in computer engineering may be obtained by successful completion of 13 or more semester credit hours of approved electrical or computer engineering or computer science course work at the 200, 300 or 400 level. In addition, a student seeking a minor in computer engineering must satisfy all pre- or corequisite requirements for the courses selected. CS 150 or ENGN 150, CS 250, and CS 252 are prerequisites for the minor and are not included in the calculation of the GPA for the minor. The chief departmental advisor must approve the precise course of study.

The basic course requirements are as follows:

- **ECE 241** Fundamentals of Computer Engineering 4
- **CS 361** Data Structures and Algorithms 3
- Select two of the following: * 6
 - **ECE 341** Digital System Design
 - **ECE 346** Microcontrollers
 - **ECE 355** Introduction to Networks and Data Communications
 - **ECE 381** Introduction to Discrete-time Signal Processing **
 - **ECE 406** Computer Graphics and Visualization
 - **ECE 407** Introduction to Game Development
 - **ECE 441** Advanced Digital Design and Field Programmable Gate Arrays
 - **ECE 455** Network Engineering and Design
 - **ECE 483** Embedded Systems

Total Hours 13

* Course substitutions may be approved by the chief departmental advisor.
** Class not permitted for Electrical Engineering majors due to being a requirement in the major.

For completion of a minor, a student must have a minimum overall cumulative grade point average of 2.00 in all courses specified as a requirement for the minor exclusive of lower-level courses (except for ECE 241), prerequisites and corequisites and complete a minimum of six hours of upper-division courses in the minor through courses offered by Old Dominion University. Completion of a minor in computer engineering with a GPA of 3.00 or greater partially satisfies the leveling requirements for graduate degrees in computer engineering.

Minor in Modeling and Simulation

James Leathrum, Minor Coordinator

An undergraduate minor in modeling and simulation may be obtained by successful completion of 12 or more credit hours of approved modeling and simulation engineering coursework at the 200-, 300-, and 400-level. In addition, a student seeking a minor in modeling and simulation must satisfy all pre- or corequisite requirements for the courses selected.

There are two tracks available in the minor in modeling and simulation: simulation application and simulation development. The minor coordinator must approve the precise course of study in the minor.

The basic course requirements for the two tracks are as follows:

Simulation Application Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 330</td>
<td>An Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 205</td>
<td>Discrete Event Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 320</td>
<td>Continuous Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 410</td>
<td>Model Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 451</td>
<td>Analysis for Modeling and Simulation</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12

Simulation Development Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 330</td>
<td>An Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 205</td>
<td>Discrete Event Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 331</td>
<td>Simulation Software Design</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 406</td>
<td>Introduction to Distributed Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 408</td>
<td>Introduction to Game Development</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 441</td>
<td>Computer Graphics and Visualization</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12

When appropriate, other course work can be developed in consultation with the minor coordinator.

For completion of the minor, a student must pass each course required for the minor, achieve a cumulative grade point average of 2.00 in all courses specified as a requirement for the minor exclusive of lower-level courses, prerequisites and corequisites, complete a minimum of twelve credit hours of approved coursework for the minor, and complete at least six hours of upper-level courses in the minor requirement through courses offered by Old Dominion University. To enter the program, students must have completed calculus and one college-level computer-programming course (CS 150, ENGN 150, or equivalent).

Biomedical Engineering Interdisciplinary Minor

Dharmakeerthi Nawarathna, BME Minor Coordinator

This interdisciplinary minor is for students who would like to learn about processes encountered in biomedical engineering innovation and enhance their ability to integrate knowledge from different disciplines with principles used in biomedical engineering. The minor offers an opportunity for students to be recognized for study in this growing multidisciplinary field and to enhance competitiveness for job opportunities upon graduation.

Course prerequisites for BME 403, BME 404, BME 405, and BME 409 are BIOL 240 or BIOL 250, and MATH 200, MATH 205 or MATH 211. Prerequisite courses are not included in the calculation of the grade point average for the minor.

Course requirements are as follows:

Select two of the following BME courses: 6

- **BME 403** Introduction to Mathematical Modeling in Physiology
- **BME 404** Introduction to Biomaterials
- **BME 405** Biomechanics
- **BME 409** Introduction to Regenerative Medicine

Select two elective courses from the following: 6

- **BIOL 446** Comparative Biomechanics
BIO 460 Frontiers in Nanoscience and Nanotechnology
BIO 490 Advanced Human Physiology
BIO 496 Topics in Biological Sciences (approved by minor advisor)
CHEM 443 Intermediate Biochemistry
ECE 454 Introduction to Bioelectronics
ECE 462 Introduction to Medical Image Analysis (MIA)
ECE 464 Biomedical Applications of Low Temperature Plasmas
or BIO 464 Biomedical Applications of Low Temperature Plasmas
EXSC 322 Anatomical Kinesiology
EXSC 417 Biomechanics
HLSC 405 Interprofessional Study Abroad on Global Health
MAE 303 Mechanics of Fluids
MAE 440 Introduction to Finite Element Analysis
MLS 324 Clinical Instrumentation
MSIM 451 Analysis for Modeling and Simulation
NMED 331 Fundamental Concepts in Nuclear Medicine Technology
NURS 456 Global Health Perspectives

Students have the option to substitute one course from those that satisfy their major requirements for one of the minor electives with approval of the minor coordinator.

Students interested in medical simulation are encouraged to select their electives from ECE 462 and MAE 440.

Total Hours 12

The interdisciplinary minor in biomedical engineering requires 12 credit hours of 300/400-level courses selected from at least two different disciplines with a maximum of six credits from any one discipline. For completion of the interdisciplinary minor, students must have a minimum overall cumulative grade point average of 2.00 in all courses specified as a requirement for the minor exclusive of lower-level courses and prerequisite courses. At least six hours of upper-level courses must be taken through courses offered by Old Dominion University. Three credit hours may be in the major, if a major course is listed as an option for the interdisciplinary minor. As such, it will be credited toward both the major and the interdisciplinary minor.

BIOMEDICAL ENGINEERING COURSES

BME 405/505. Biomechanics. 3 Credits.
The purpose of this course is to achieve a broad overview of biomechanics, focused on the musculoskeletal system. Students will explore multiscale mechanics, including whole-body movement and mechanical properties of the structures in the musculoskeletal system. Additionally, students will survey the experimental methods and computational modeling techniques used in biomechanics research. Prerequisites: MATH 212.

BME 409/509. Introduction to Regenerative Medicine. 3 Credits.
This course will introduce fundamental knowledge in regenerative medicine including therapeutic applications of biomaterials, tissue and stem cell engineering, gene therapy and bioelectronics, with emphasis on structure-function relationships of biologic systems. In addition to lecture, students will have opportunities for group discussions and presentations on milestone work related to tissue regeneration. Students will leave with a thorough understanding of true mammalian regeneration, wound healing/repair processes, and medical device milestones as related to human tissue regeneration and repair. Prerequisites: BIOL 240 or BIOL 250 and MATH 200 or MATH 205 or MATH 211.

BME 454/554. Introduction to Bioelectronics. 3 Credits.
This course covers the electrical properties of cells and tissues as well as the use of electrical and magnetic signals and stimuli in the diagnosis and treatment of disease. Typical topics to be covered include basic cell physiology, endogenous electric fields in the body, electrocardiography, cardiac pacing defibrillation, electrotherapy, electroporation, electrotherapy in wound healing. In addition ultra-short electrical pulses for intracellular manipulation and the application of plasmas to biological systems will be covered. Prerequisites: PHYS 111N or higher and MATH 200 or higher.

BME 462/562. Introduction to Medical Image Analysis. 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. Cross-listed with ECE 462/MSIM 462. Prerequisites: a grade of C or better in MATH 212.

BME 464/564. Biomedical Applications of Low Temperature Plasmas. 3 Credits.
This course is cross listed with ECE and Biology. It is designed to be taken by senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered. Prerequisites: Senior standing.

ELECTRICAL AND COMPUTER ENGINEERING COURSES

ECE 111. Information Literacy and Research for Electrical and Computer Engineering. 2 Credits.
An introductory course for ECE students that explores information literacy in terms of information basics, information need, searching, locating, and evaluating information sources, citing and ethics of information, understanding the crucial difference of proper citation versus plagiarism, intellectual property, patent law and copyright law, and trademarks in relation to development and implementation of electrical and computer engineering projects. Prerequisites: ENGN 110.
ECE 201. Circuit Analysis I. 3 Credits.
An introduction to the analysis and theory of linear electrical circuits. Topics include: passive component definitions and connection rules; independent and dependent sources, concepts of power & energy; Kirchhoff's laws; development of network reduction techniques; formulation of mesh-current and node-voltage equations; network theorems including Thevenin, Norton, Maximum power transfer, and superposition Theorem, Operational Amplifiers, Energy Storage Elements, and initial conditions. Time Domain Analysis of First Order and Second Order Circuits, Introduction to Phasors. Basics of matrices and linear algebra with Gaussian elimination; matrix applications to linear circuit analyses; MATLAB and Circuit Simulation software (Multisim) with analyses and applications to passive circuits. (offered fall, spring, summer) Prerequisites: ECE 111 or equivalent and a grade of C or better in MATH 212. Pre- or corequisite: PHYS 232N or PHYS 262N.

ECE 202. Circuit Analysis II. 3 Credits.
Time domain analysis; Sinusoidal steady state analysis; Phasor representation of AC Circuits, Maximum power transfer and Thevenin-Norton theorems for AC circuits; Frequency response of circuits (with R, L, and C components), Laplace Transforms and transfer functions of linear circuits; extension to frequency domain circuit analysis including Bode plots. Active and passive filter design and analysis. (offered fall, spring, summer) Prerequisites: PHYS 232N or PHYS 262N; MATH 280 or MATH 307 and a grade of C or better in ECE 201.

ECE 241. Fundamentals of Computer Engineering. 4 Credits.
This course develops the foundation of computer engineering for computer engineers as well as an introductory breadth appropriate for electrical engineers. Class topics include computer information, digital design (combinational and sequential circuits), computer organization, and assembly language. The laboratory includes building digital circuits (focusing on programmable logic), assembly language programming, and system interfacing. The use of a hardware description language is employed in class and the laboratory to specify, simulate and synthesize digital circuits. Prerequisites: CS 150 or ENGN 150 and MATH 211 with a grade of C or above for both.

ECE 242. Fundamentals of Computer Engineering Lab. 1 Credit.
Available for pass/fail grading only. The laboratory includes building digital circuits (focusing on programmable logic), assembly language programming, and system interfacing. The use of a hardware description language is employed in the laboratory to specify, simulate and synthesize digital circuits. This course is only for students who do not have the laboratory component in ECE 241. Prerequisites: CS 150 or ENGN 150 and MATH 211 with a grade of C or better for both, and written permission of the Chief Departmental Advisor of the Electrical & Computer Engineering Department.

ECE 287. Fundamental Electric Circuit Laboratory. 2 Credits.
Objective of course is to provide students in electrical and computer engineering with a 'hands-on' introduction to selected topics in electrical engineering. Students will use basic circuit analysis skills and programming skills to design, build, and test electrical networks interfacing to an Arduino Uno micro-controller. Labs will also provide an introduction to basic measurement techniques and electrical laboratory equipment (power supplies, oscilloscopes, voltmeters, etc.). Prerequisites: A grade of C or better in both CS 150 or ENGN 150 and ECE 201. Pre- or corequisite: ENGL 211C or ENGL 221C or ENGL 231C and ECE 202.

ECE 300. Math Review for Graduate Engineering Analysis. 3 Credits.
Complex algebra, linear algebra and matrix methods, aspects of multivariable calculus, differential equations, Laplace transforms, and aspects of probability. Applications and examples in the field of electrical engineering will be used. The use of Matlab in engineering problem solving will be presented. Course not available to ECE undergraduate majors. Prerequisites: Departmental approval.

ECE 301. Review of Electrical Engineering Analysis. 3 Credits.
Electrical engineering problems, including time-domain and frequency-domain circuit analysis, analysis of networks with electronic components. The use of Matlab and Simulink in electrical engineering problem solving will be presented. Course not available to ECE undergraduate majors. Prerequisites: Departmental approval.

ECE 302. Linear System Analysis. 3 Credits.
This course covers the fundamental concepts of signal and linear system representation and analysis in continuous time. Topics include: Operations with sinusoids and complex exponentials. Signal properties, operations, and models. System properties, classification, and models. Time-domain system analysis, including impulse response, total system response, stability, and convolution. Fourier analysis of continuous-time signals and signal transmission through linear time-invariant systems. Ideal and practical filters. Advanced matrix operations and linear algebra with applications to signal and system analysis. Characteristic equation of a matrix, eigenvalues and eigenvectors. Performing time and frequency domain analysis using MATLAB. (offered fall, spring). Prerequisites: MATH 280 or MATH 307 and a grade of C or better in ECE 201 and ECE 202. Pre- or corequisite: ECE 287.

ECE 303. Introduction to Electrical Power. 3 Credits.
AC steady state power, single-phase and three-phase networks, electric power generation, transformers, transmission lines, electric machinery and the use of power. Energy resources, power plants, renewable energy, electric safety. (offered fall, summer) Prerequisites: a grade of C or better in ECE 201.

ECE 304. Probability, Statistics, and Reliability. 3 Credits.
Introduction to probability, probability models, discrete and continuous random variables, statistics, reliability, and stochastic processes. Applications include modeling of physical systems, data analysis, communications, designed engineering experiments, stochastic processes, and hypothesis testing. Prerequisites: a grade of C or better in MATH 212.

ECE 306. Discrete System Modeling and Simulation. 3 Credits.
An introduction to the modeling and simulation of discrete-state, event-driven systems. Models for Discrete Event Systems (DES) are presented including state automata, Petri nets, queuing models, and event graphs. Event management strategies are developed leading to methodologies for simulating DES models. Example engineering simulation applications covered include digital circuits, computer networks, manufacturing, and traffic. Investigation of the steps of a DES simulation study including problem formulation, conceptual model design, simulation model development, input data modeling, output data analysis, verification and validation, and design of simulation experiments. Prerequisites: A grade of C or better in ECE 241. Pre- or corequisite: ECE 304.

ECE 313. Electronic Circuits. 4 Credits.
Introduction to junction diodes, bipolar junction transistors (BJTs), MOS field-effect transistors (MOSFETs) and operational amplifiers (op-amps). Design concepts for discrete analog circuits with diodes, BJTs, MOSFETs and op-amps. The lab component introduces design and techniques for implementation of analog circuits. Prerequisites: CHEM 123N, a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C, and a grade of C or better in ECE 201, ECE 202 and ECE 287. Pre- or corequisite: a grade of C or better in ECE 241.

ECE 320. Continuous System Modeling and Simulation. 3 Credits.
An introduction to the fundamentals of modeling and simulating continuous-state, time-driven systems. Topics include state-space model formulation of systems, model representation using block diagrams, stock-flow diagrams and bond graphs, and numerical integration techniques including Taylor series, families of Runge-Kutta and Adams methods. Application domains include electrical systems, signals (including sampling), physical, and biological simulations. Prerequisites: Junior standing. Pre- or corequisite: ECE 302.
ECE 323. Electromagnetics. 3 Credits.
This course provides an introduction to the basic concepts of electromagnetics. Topics include math fundamentals for electromagnetic studies, Maxwell’s equations, electrostatics, electromagnetic waves, polarization, wave propagation in various media and across interfaces and transmission lines. This fundamental course is to build an electrical engineering/physics foundation for students and enable them to identify, formulate, and solve future engineering problems. Prerequisites: MATH 285 or MATH 312 and a grade of C or better in ECE 201, ECE 202 and ECE 287.

ECE 332. Microelectronic Materials and Processes. 3 Credits.
An introduction to fundamental properties of semiconductors and device fabrication processes. The topics include crystal structure, bonding, energy bands, doping, carrier densities, mobility, resistivity, recombination, drift, and diffusion. Basic structure of p-n junctions, BJTs and MOSFETs and their fabrication processes, including solid state diffusion, thermal oxidation of silicon, ion implantation, chemical vapor deposition, thin film deposition, photolithography and etching are reviewed. (offered fall and spring) Prerequisites: CHEM 123N and a grade of C or better in ECE 201, ECE 202 and ECE 287.

ECE 341. Digital System Design. 3 Credits.
Tools and methodologies for top-down design of complex digital systems. Important topics include minimization, mixed logic, algorithmic state machines, microprogrammed controllers, creating and using a gold model, data and control path design and data movement and routing via buses. Design methodologies covered include managing the design process from concept to implementation, verification using a gold model, and introduction to design flow. A hardware description language is used extensively to demonstrate models and methodologies, and is also used in design exercises and projects. (offered fall, spring) Prerequisites: a grade of C or better in ECE 241.

ECE 346. Microcontrollers. 3 Credits.
A hands-on approach to microprocessor and peripheral system programming, I/O interfacing, and interrupt management. A sequence of projects requiring the programming and integration of a microcontroller-based system is conducted. Project assignments require a microcontroller evaluation board and accessories supplied by the student. (offered spring) Prerequisites: a grade of C or better in ECE 241.

ECE 348. Simulation Software Design. 3 Credits.
Introduction to data structures, algorithms, programming methodologies, and software architectures in support of computer simulation. Topics include object-oriented programming, data structures (including lists, queues, sets, and trees), algorithms (including searching, sorting, and order of complexity), and advanced topics (reusable code, design patterns, multithreading, and coroutines). Simulation structures developed include event lists, time management, and queuing models. Software models are implemented and tested. Application areas focus on digital circuit and computer networks. The course also analyzes the broader impacts of simulation in a global, economic and societal context. Prerequisites: ECE 306, CS 381, and a grade of C or better in CS 250. Pre- or corequisite: ECE 341.

ECE 350. Mathematics for Data Analytics Engineering. 3 Credits.
Mathematical concepts for data analytics engineering including linear algebra, matrix operations, linear spaces, and advanced differential calculus. Prerequisites: Grade of C or better in MATH 212. Pre- or corequisite: ECE 304.

ECE 355. Introduction to Networks and Data Communications. 3 Credits.
This course introduces the basic concepts of computer networks and data communications. Topics include protocol layers, the application layer, the transport layer, the network layer, the data link layer, and the physical layer. Students will learn how to use network packet analyzer tools to do simple network analysis. Emphasis is on gaining an understanding of network engineering as it relates to system operation and maintenance. (offered fall) Prerequisites: ECE 304 and a grade of C or better in ECE 241.

ECE 368. Student Internship/Cooperative Education. 1-3 Credits.
Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work experience is to take place. Upon successful completion, the combination of three consecutive semesters of ECE 368 (one-credit internship) can be considered equivalent to one three-credit Technical Elective course. (offered fall, spring, summer) Prerequisites: Approval by department and Career Development Services.

ECE 381. Introduction to Discrete-time Signal Processing. 3 Credits.
This course covers fundamental digital signal processing (DSP) techniques that form the basis for a wide variety of application areas. Topics include discrete-time signals and systems, time domain analysis, solutions of difference equations, Z-transform analysis, discrete Fourier transforms (DFT), sampling theorem, and Fourier analysis of linear time-invariant systems. (offered fall and spring) Prerequisites: ECE 302.

ECE 387. Microelectronics Fabrication Laboratory. 3 Credits.
The laboratory course will enable students to fabricate MOSFETs, MOS capacitors, diffused resistors and p-n diodes. Students will be trained to operate the equipment required for wet and dry oxidation, thin film deposition, solid state diffusion, photolithography, and etching. Students will fabricate and analyze the devices by current-voltage characteristic, capacitance-voltage characteristic, film thickness and conductivity measurements. (offered fall and spring) Prerequisites: ECE 332.

ECE 395. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 396. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 403/503. Power Electronics. 3 Credits.
Power electronics provides the needed interface between an electrical source and an electrical load and facilitates the transfer of power from a source to a load by converting voltages and currents from one form to another. Topics include: alternating voltage rectification, Pulse Width Modulation (PWM), DC converters (Buck, Boost, Buck-Boost, Cuk and SEPIC converters), negative feedback control in power electronics, isolated switching mode power supply, flyback and forward power supply, solid state power switches, AC inverter. (Offered spring) Prerequisites: ECE 303, ECE 313 and a grade of C or better in ECE 202 and ECE 287.

ECE 404/504. Electric Drives. 3 Credits.
Electric drives efficiently control the torque, speed and position of electric motors. This course has a multi-disciplinary nature and includes fields such as electric machine theory, power electronics, and control theory. Topics include: switch-mode power electronics, magnetic circuit, DC motor, AC motor, Brushless DC motor, induction motor, speed control of induction motor, vector control of induction motor, stepper-motor. (offered fall) Prerequisites: ECE 303 and a grade of C or better in ECE 202 and ECE 287.

ECE 405/505. Power System Design & Analysis. 3 Credits.
This course covers basic power circuit analysis and introductory power system engineering and focuses on the transmission line design, power flow study, short circuit protection, and power distribution in electric power systems, followed by a survey of several applications and case studies. (offered fall) Prerequisites: ECE 303 and a grade of C or better in ECE 202 and ECE 287, or equivalent knowledge in electric machines and circuits.

ECE 406/506. Computer Graphics and Visualization. 3 Credits.
The course provides a practical treatment of computer graphics and visualization with emphasis on modeling and simulation applications. It covers digital image and signal processing basics such as sampling and discrete Fourier transform, computer graphics fundamentals, visualization principles, and software architecture for visualization in modeling and simulation. Written communication and information literacy skills are stressed in this course. (Cross listed with MSIM 441.) (Offered fall) Prerequisites: ECE 348 or CS 361.
ECE 407/507. Introduction to Game Development. 3 Credits.
An introductory course focused on game development theory and modern practices with emphasis on educational game development. Topics include game architecture, computer graphics theory, user interaction, audio, high level shading language, animation, physics, and artificial intelligence. The developed games can run on a variety of computer, mobile, and gaming platforms. (Cross listed with MSIM 408.) (Offered spring) Prerequisites: CS 361 or MSIM 331.

ECE 408/508. Fundamentals of Electric Vehicles. 3 Credits.
This course covers the fundamentals of electric vehicles and focuses on the components, power control, energy management, power train dynamics and other related topics in purely electric and hybrid electric vehicle systems, including a survey of several applications and case studies. (Offered spring) Prerequisites: ECE 303 and a grade of C or better in ECE 202 and ECE 287.

ECE 409/509. Introduction to Distributed Simulation. 3 Credits.
An introduction to distributed simulation. Topics include motivation for using distributed simulation, distributed simulation architectures, time management issues, and distributed simulation approaches. Current standards for distributed simulation are presented. Prerequisites: MSIM 331 or ECE 348.

ECE 410/510. Model Engineering. 3 Credits.
The goal of this course is to develop understanding of the various modeling paradigms appropriate for capturing system behavior and conducting digital computer simulation of many types of systems. The techniques and concepts discussed typically include UML, concept graphs, Bayesian nets, Markov models, Petri nets, system dynamics, Bond graphs, etc. Students will report on a particular technique and team to implement a chosen system model. (Cross-listed with MSIM 410.) (Offered spring) Prerequisites: MSIM 205. Pre- or corequisite: MSIM 320.

ECE 416/516. Cyber Defense Fundamentals. 3 Credits.
This course focuses on cybersecurity theory, information protection and assurance, and computer systems and networks security. The objectives are to understand the basic security models and concepts, learn fundamental knowledge and tools for building, analyzing, and attacking modern security systems, and gain hands-on experience in cryptographic algorithms, security fundamental principles, and Internet security protocol and standards. (Offered fall) Prerequisites: Permission of the instructor. Pre- or corequisite: ECE 355.

ECE 419/519. Cyber Physical System Security. 3 Credits.
Cyber Physical Systems (CPS) integrate computing, networking, and physical processes. The objectives of this course are to learn the basic concepts, technologies and applications of CPS, understand the fundamental CPS security challenges and national security impact, and gain hands-on experience in CPS infrastructures, critical vulnerabilities, and practical countermeasures. (Offered spring) Prerequisites: ECE 355 or permission of the instructor.

ECE 441/541. Advanced Digital Design and Field Programmable Gate Arrays. 3 Credits.
Course will present FPGA technologies and methods using CAD design tools for implementation of digital systems using FPGAs. Topics include advanced methods of digital circuit design including specification, synthesis, implementation and prototyping; managing multiple clock domains, static timing analysis, timing closure, system reset design, simulation, and optimization; troubleshooting using embedded logic analyzers and integrated development environments (IDEs). Practical system design examples include general purpose data processing, system on a chip (SOC) prototyping, hardware accelerators, and an introduction to domain specific architectures. (Offered spring) Prerequisites: ECE 341.

ECE 443/543. Computer Architecture. 3 Credits.
An introduction to computer architectures. Analysis and design of computer subsystems including central processing units, memories and input/output subsystems. Important concepts include datapaths, computer arithmetic, instruction cycles, pipelining, virtual and cache memories, direct memory access and controller design. (offered fall) Prerequisites: ECE 341 and ECE 346.

ECE 445/545. Introduction to Computer Vision. 3 Credits.
Overview of digital image processing including visual perception, image formation, spatial transformations, image enhancement, color image representation and processing, edge detection, image segmentation, and data processing method for computer vision applications. Hand-on projects will be introduced to better understand computer vision applications. (Offered fall) Prerequisites: A grade of C or better in ENGN 150 or CS 150. Pre- or corequisite: ECE 350.

ECE 450/550. Introduction to Machine Learning for Data Analytics Engineering. 3 Credits.
Machine Learning provides a practical treatment of design, analysis and implementation of algorithms, which learn from examples. Topics include multiple machine learning models: linear regression, logistic regression, neural networks, support vector machines, deep learning, Bayesian learning and unsupervised learning. Students are expected to use popular machine learning tools and algorithms to solve real data engineering problems. (Offered spring) Prerequisites: A grade of C or better in ENGN 150 or CS 150. Pre- or corequisite: ECE 350.

ECE 451/551. Communication Systems. 3 Credits.
Fundamentals of communication systems engineering. Modulation methods including continuous waveform modulation (amplitude, angle). Design and analysis of modulation systems and performance in the presence of noise. Communication simulation exercises through computer experiments. (Offered spring) Prerequisites: ECE 304 and ECE 302.

ECE 452/552. Introduction to Wireless Communication Networks. 3 Credits.
Introduction to current wireless network technologies and standards. The radio frequency spectrum and radio wave propagation models (pathloss, fading, and multipath). The radio link and link budgets. Modulation, diversity, and multiple access techniques. Wireless network planning and operation. Current and emerging wireless technologies (satellite systems, vehicular/sensor networks). (Offered fall) Prerequisites: ECE 304 and ECE 302.

ECE 453/553. Analysis for Modeling and Simulation. 3 Credits.
An introduction to analysis techniques appropriate to the conduct of modeling and simulation studies. Topics include input modeling, random number generation, output analysis, variance reduction techniques, and experimental design. In addition, techniques for verification & validation are introduced. Course concepts are applied to real systems and data. Prerequisites: MSIM 205 or ECE 306 and ECE 304.

ECE 454/554. Introduction to Bioelectrics. 3 Credits.
Covers the electrical properties of cells and tissues as well as the use of electrical and magnetic signals and stimuli in the diagnosis and treatment of disease. Typical topics to be covered include basic cell physiology, endogenous electric fields in the body, electrocardiography, cardiac pacing, defibrillation, electrotherapy, electroporation, electrotherapy in wound healing. In addition, ultrashort electrical pulses for intracellular manipulation and the application of plasmas to biological systems will be covered. (Offered fall) Prerequisites: PHYS 111N or higher; MATH 200 or higher.

ECE 455/555. Network Engineering and Design. 3 Credits.
This course is an extension of ECE 355 into a semester long project. Emphasis is on gaining an understanding of networking design principles that entails all aspects of the network development life cycle. Topics include campus LAN models and design, VLANs, internetworking principles and design, WAN design, design of hybrid IP networks, differentiated vs. integrated services, traffic flow measurement and management. (offered spring) Prerequisites: ECE 355 or permission of the instructor.

ECE 458/558. Instrumentation. 3 Credits.
Computer interfacing using a graphical programming language with applications involving digital-to-analog conversion (DAC), analog-to-digital conversion (ADC), digital input output (DIO), Virtual Instrument System Architecture (VISA) and universal Service Bus (USB). Analysis of sampled data involving use of probability density function, mean and standard derivations, correlations, and the power spectrum. (offered spring, summer) Prerequisite: ECE 302 or permission of instructor.
ECE 461/561. Automatic Control Systems. 3 Credits.
Analysis and design of control systems as found in automobiles and aircraft, autonomous vehicles, robots, and many other engineering systems. Time and frequency domain techniques such as root locus, Bode, Nyquist and state space techniques are utilized together with computer-aided analysis and design. (Offered fall) Prerequisites: ECE 302.

ECE 462/562. Introduction to Medical Image Analysis (MIA). 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. (Offered every other spring) Prerequisites: a grade of C or better in MATH 212.

ECE 463/563. Design and Modeling of Autonomous Robotic Systems. 3 Credits.
This course focuses on autonomous robotics systems with emphasis on using modeling and simulation (M&S) for system level design and testing. Fundamental concepts associated with autonomous robotic systems are discussed. Course topics include: robotic control, architectures, and sensors as well as more advanced concepts such as error propagation, localization, mapping and autonomy. Design strategies that leverage M&S to accelerate the development and testing of sophisticated autonomous robotic algorithms for individual or teams of robots are covered. Prerequisites: CS 150 or ENGN 150.

ECE 464/564. Biomedical Applications of Low Temperature Plasmas. 3 Credits.
This course is cross listed between ECE, BME and BIOL. It is designed to be taken by senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered. (Offered fall) Prerequisites: Senior standing.

ECE 470/570. Foundations of Cyber Security. 3 Credits.
Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attack and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. (Cross-listed with MSIM 470) (Offered fall) Prerequisites: A grade of C or better in ENGN 150 or CS 150 and junior standing or permission of the instructor.

ECE 471/571. Introduction to Solar Cells. 3 Credits.
This course is designed to provide the fundamental physics and characteristics of photovoltaic materials and devices. A focus is placed on i) optical interaction, absorption, and design for photovoltaic materials and systems, ii) subsequent energy conversion processes in inorganic/organic semiconductor such as generation, recombination, and charge transport, and iii) photovoltaic testing and measurement techniques to characterize solar cells including contact and series resistance, open circuit voltage, short circuit current density, fill factor, and energy conversion efficiency of photovoltaic devices. (Offered fall) Prerequisites: ECE 332.

ECE 472/572. Plasma Processing at the Nanoscale. 3 Credits.
The science and design of partially ionized plasma and plasma processing devices used in applications such as etching and deposition at the nanoscale. Gas phase collisions, transport parameters, DC and RF glow discharges, the plasma sheath, sputtering, etching, and plasma deposition. (Offered fall) Prerequisites: ECE 323.

ECE 473/573. Solid State Electronics. 3 Credits.
The objective of this course is to understand basic semiconductor devices by understanding semiconductor physics (energy bands, carrier statistics, recombination and carrier drift and diffusion) and to gain an advanced understanding of the physics and fundamental operation of advanced semiconductor devices. Following the initial introductory chapters on semiconductor physics, this course will focus on the theory of p-n junctions, metal-semiconductor Schottky diodes, MOS capacitors, MOS field effect transistors (MOSFET) and bipolar junction transistors (BJTs). (Offered fall) Prerequisites: ECE 313, ECE 323, ECE 332 and MATH 212.

ECE 474/574. Optical Fiber Communication. 3 Credits.
This course introduces seniors and first year graduates to the physics and design of optical fiber communication systems. The topics covered are: electromagnetic waves; optical sources including laser diodes; optical amplifiers; modulators; optical fibers; attenuation and dispersion in optical fibers; photodetectors; optical receivers; noise considerations in optical receivers; optical communication systems. (Offered spring) Prerequisites: ECE 323.

ECE 475/575. Transportation Data Analytics. 3 Credits.
This course presents the basic techniques for transportation data analytics. It will discuss statistical modeling, prominent algorithms, and visualization approaches to analyze both small- and large-scale data sets generated from transportation systems. Practices of using different data for various real-world traffic/transportation applications and decision making will also be discussed. Prerequisites: Basic probability and statistics (e.g., STAT 330 or ECE 304); any programming language such as C, Python or Java is beneficial but not required.

ECE 483/583. Embedded Systems. 3 Credits.
This course covers fundamentals of embedded systems: basic architecture, programming, and design. Topics include processors and hardware for embedded systems, embedded programming and real time operating systems. (Offered fall) Prerequisites: ECE 346.

ECE 484W. Computer Engineering Design I. 3 Credits.
Emphasis is on the design of a complex digital circuit and microcontroller interfacing. A semester-long project involves the design, simulation and testing of a digital architecture and software GUI. Several moderate scale digital modules are designed, simulated, implemented and tested during the semester. Design methods incorporate CAD design tools, implementation with advanced integrated circuit technology and contemporary software tools. Oral and written communication skills are stressed. This is a writing intensive course. (offered fall and spring) Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; ECE 302; ECE 341; ECE 346; and ECE 381 OR ECE 320. Pre- or corequisite: ECE 304, ECE 313, and ECE 406 OR ECE 443.

ECE 485W. Electrical Engineering Design I. 3 Credits.
This course is designed to give senior electrical engineering students the opportunity to design and test electronic subsystems to address realistic engineering problems. Lectures focus on providing professional orientation and exploration of the design process. Small group design projects focus on the development of electronic subsystems. Oral and written communication skills are stressed. The students will be in groups of two or three and they are to develop a robot, test its capabilities and modify them to meet a design challenge in the last few weeks of the semester. Topics include programming the ARDUINO UNO, wire- wrap techniques, sensor testing, motor testing, and overall robot functioning. This is a writing intensive course. (offered fall, spring) Prerequisites: ECE 302, ECE 313 and ECE 381 and a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C. Pre- or corequisite: ECE 303, ECE 304, ECE 323, and ECE 332.
ECE 486. Preparatory ECE Senior Design II. 2 Credits.
The course is the preparatory, proposal development section of part two of the senior capstone design experience for electrical and computer engineering majors. The course will focus on developing a proposal for a group design project. The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Elements of developing a successful proposal are emphasized along with written communication skills. Industry-sponsored multi-disciplinary design projects are an option. Prerequisites: senior standing. Pre- or corequisite: ECE 484W or ECE 485W.

ECE 487. ECE Senior Design II. 2 Credits.
Part two of the senior capstone design experience for electrical and computer engineering majors. In this course, students will implement the design proposal developed in ECE 486. The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Oral and written communication skills are emphasized. Industry-sponsored multi-disciplinary design projects are an option. Prerequisites: ECE 486. Pre- or corequisite: ECE 484W or ECE 485W.

ECE 488. ECE Senior Design III. 3 Credits.
Part three of the senior capstone design experience for electrical and computer engineering majors. Individual and group design projects focus on the development of complete electrical and computer systems. Oral and written communication skills are stressed. Industry-sponsored multi-disciplinary design projects are an option. Prerequisites: ECE 487.

ECE 491. Microelectronics Design Experience. 3 Credits.
This is a Virginia Microelectronics Consortium (VMEC) practical hands-on, state-of-the-art summer research internship experience in the laboratory. This is not a regular class, but a summer research internship open only to those undergraduate students who apply for and win a VMEC Summer Research Scholarship. The VMEC internship provides excellent technical knowledge as well as industrial and academic contacts for career development. Students complete a 10-13 week summer project on a microelectronics research project or design activity at an engineering school or in the State-of-the-Art Cleanroom of the two industry members of the VMEC, which are Micron Technology & British Aerospace Systems (BAE Systems) both in Manassas, VA. Details regarding eligibility and report requirements are available in the department during fall with application deadline of October 30 each fall. Prerequisites: Sophomore or Junior standing in electrical or computer engineering with GPA above 3.0 and department approval.

ECE 495/595. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 496/596. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 498. ECE Senior Thesis I. 1 Credit.
Part one of a two-semester thesis project involving literature research, development of technical writing skills, and possibly obtaining lab experience using a variety of techniques and equipment. Each student will undertake a research experience under the supervision of a departmental faculty member. A preliminary report of research findings is required at the end of the semester. Upon successful completion, the combination of ECE 498 (1 credit) and ECE 499 (2 credits) can be considered equivalent to one 3-credit ECE Technical Elective Course. (Offered fall, spring, summer) Prerequisites: Major in Electrical Engineering, Computer Engineering, or Modeling & Simulation Engineering; Cumulative GPA of 3.00 or higher. Pre- or corequisite: ECE 484W or ECE 485W.

ECE 499. ECE Senior Thesis II. 2 Credits.
Continuation of ECE 498. The research culminates in a thesis that includes a literature review, description of methods, results and conclusions, and an oral presentation. Upon successful completion, the combination of ECE 498 (1 credit) and ECE 499 (2 credits) can be considered equivalent to one 3-credit ECE Technical Elective Course. (Offered fall, spring, summer) Prerequisites: ECE 498, and a cumulative GPA of 3.00 or better.

MODELING AND SIMULATION Courses

MSIM 111. Information Literacy and Research for Modeling and Simulation Engineers. 2 Credits.
An introduction to methods and standards for locating and using information in the discipline of modeling and simulation engineering. Topics include: assessing information requirements; searching for, locating and evaluating information sources related to modeling and simulation; tools for managing, sharing, and presenting information; and ethical issues in the use of information. Students will complete exercises and research on topics involving information of interest to modeling and simulation engineers. Prerequisites: ENGN 110.

MSIM 201. Introduction to Modeling and Simulation Engineering. 3 Credits.
This is the first course for Modeling and Simulation Engineering (M&SE) students. M&SE discipline is surveyed at an overview level of detail. Topics include basic definitions, M&S paradigms and methodologies, applications, design processes, and human factors. Information literacy and research methods are addressed. Papers and oral presentations are required and allow the student to investigate different aspects of the discipline. The course provides a general conceptual framework for further M&SE studies. Prerequisites: MATH 211 with a C or better and PHYS 231N with a C or better. Pre- or corequisite: CS 150 or ENGN 150.

MSIM 205. Discrete Event Simulation. 3 Credits.
An introduction to the modeling and simulation of discrete-state, event-driven systems. Topics include: basic properties and terminology for discrete event systems (DES); models for DES including queuing models, Petri nets, and state automata; and methodologies for simulating DES models. Investigation of the steps of a DES simulation study including problem formulation, conceptual model design, simulation model development, input data modeling, output data analysis, verification and validation, and design of simulation experiments. Corequisite: MSIM 281. Prerequisites: MSIM 201. Pre- or corequisite: STAT 330.

MSIM 281. Discrete Event Simulation Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development and application of discrete event simulation. Topics include an introduction to one or more discrete event simulation tools, common modeling constructs, data gathering and input data modeling, design of simulation experiments, output data analysis, and verification and validation. The design and implementation of a series of increasingly complex simulations of various discrete event systems are conducted. The laboratory is designed to accompany MSIM 205. Student written reports are required.

MSIM 320. Continuous Simulation. 3 Credits.
An introduction to the fundamentals of modeling and simulating continuous-state, time-driven systems. Topics include differential equation representation of systems, formulation of state variable equations, and numerical integration techniques including Taylor series, families of Runge-Kutta and Adams methods. Application domains considered include physical, biological, electrical systems, and real-time simulations. Corequisite: MSIM 382. Prerequisite: MSIM 201. Pre- or corequisite: MATH 307 (or MATH 280) and PHYS 227N or PHYS 232N.

MSIM 331. Simulation Software Design. 3 Credits.
Introduction to data structures, algorithms, programming methodologies, and software architectures in support of computer simulation. Topics include lists, queues, sets, trees, searching, sorting, reusable code, and order of complexity. Simulation structures developed include event lists, time management, and queuing models. Software models are implemented and tested. Corequisite: MSIM 383. Prerequisites: MSIM 205, CS 330 and CS 381.

MSIM 367. Cooperative Education. 1-3 Credits.
Student participation for credit based on the academic relevance of work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work is to take place. Prerequisites: approval by department and Career Development Services.
MSIM 368. Internship. 1-3 Credits. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by department and Career Development Services.

MSIM 369. Practicum. 1-3 Credits. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by the department and Career Development Services.

MSIM 382. Continuous Simulation Laboratory. 1 Credit. A laboratory course designed to provide a hands-on introduction to the development and application of continuous simulation. Topics include an introduction to one or more continuous simulation tools, modeling of various physics-based systems, and numerical solution of differential equations. The design and implementation of a series of increasingly complex simulations of various continuous systems are conducted. The laboratory is designed to accompany MSIM 320. Student written reports are required. Prerequisite: MSIM 201. Corequisite: MSIM 320.

MSIM 383. Simulation Software Design Laboratory. 1 Credit. A laboratory course designed to provide a hands-on introduction to the development of simulation software. Topics include data structures, algorithms, and simulation executables. The students will conclude with the development of a basic simulation executable capable of managing discrete event simulations. The laboratory is designed to accompany MSIM 331. Student written reports are required. Prerequisites: MSIM 205, CS 330 and CS 381. Corequisite: MSIM 331.

MSIM 395. Topics in Modeling and Simulation Engineering. 1-3 Credits. Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 396. Topics in Modeling and Simulation Engineering. 1-3 Credits. Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 406/506. Introduction to Distributed Simulation. 3 Credits. An introduction to distributed simulation. Topics include motivation for using distributed simulation, distributed simulation architectures, time management issues, and distributed simulation approaches. Current standards for distributed simulation are presented. Prerequisites: MSIM 331 or ECE 348.

MSIM 408/508. Introduction to Game Development. 3 Credits. An introductory course focused on game development theory and modern practices with emphasis on educational game development. Topics include game architecture, computer graphics theory, user interaction, audio, high level shading language, animation, physics, and artificial intelligence. The developed games can run on a variety of computer, mobile, and gaming platforms. Prerequisites: CS 361 or MSIM 331.

MSIM 410/510. Model Engineering. 3 Credits. The goal of this course is to develop understanding of the various modeling paradigms appropriate for capturing system behavior and conducting digital computer simulation of many types of systems. The techniques and concepts discussed typically include UML, concept graphs, Bayesian nets, Markov models, Petri nets, system dynamics, Bond graphs, etc. Students will report on a particular technique and team to implement a chosen system model. (cross-listed with ECE 410) Prerequisites: MSIM 205. Pre- or corequisite: MSIM 320.

MSIM 416/516. Cyber Defense Fundamentals. 3 Credits. This course focuses on cybersecurity theory, information protection and assurance, and computer systems and networks security. The objectives are to understand the basic security models and concepts, learn fundamental knowledge and tools for building, analyzing, and attacking modern security systems, and gain hands-on experience in cryptographic algorithms, security fundamental principles, and Internet security protocol and standards. Prerequisites: ECE 355 or MSIM 470.

MSIM 419/519. Cyber Physical Systems Security. 3 Credits. Cyber Physical Systems (CPS) integrate computing, networking, and physical processes. The objectives of this course are to learn the basic concepts, technologies and applications of CPS, understand the fundamental CPS security challenges and national security impact, and gain hands-on experience in CPS infrastructures, critical vulnerabilities, and practical countermeasures. Cross-listed with ECE 419/CYSE 419. Prerequisites: CS 150 or ENGN 150.

MSIM 441/541. Computer Graphics and Visualization. 3 Credits. The course provides a practical treatment of computer graphics and visualization with emphasis on modeling and simulation applications. It covers computer graphics fundamentals, visualization principles, and software architecture for visualization in modeling and simulation. Prerequisites: CS 250.

MSIM 451/551. Analysis for Modeling and Simulation. 3 Credits. An introduction to analysis techniques appropriate to the conduct of modeling and simulation studies. Topics include input modeling, random number generation, output analysis, variance reduction techniques, and experimental design. In addition, techniques for verification & validation are introduced. Course concepts are applied to real systems and data. Prerequisites: MSIM 205 or ECE 306 and STAT 330 or ECE 304.

MSIM 462/562. Introduction to Medical Image Analysis. 3 Credits. Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. Cross-listed with ECE 462/ECE 562. Prerequisites: Junior standing.

MSIM 463/563. Design and Modeling of Autonomous Robotic Systems. 3 Credits. This course focuses on autonomous robotics systems with emphasis on using modeling and simulation (M&S) for system level design and testing. Fundamental concepts associated with autonomous robotic systems are discussed. Course topics include: robotic control, architectures, and sensors as well as more advanced concepts such as error propagation, localization, mapping and autonomy. Design strategies that leverage M&S to accelerate the development and testing of sophisticated autonomous robotic algorithms for individual or teams of robots are covered. Prerequisites: CS 150 or ENGN 150.

MSIM 470/570. Foundations of Cyber Security. 3 Credits. Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attacks and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. Prerequisites: CS 150 or ENGN 150 and junior standing.

MSIM 474/574. Transportation Data Analytics. 3 Credits. This course presents the basic techniques for transportation data analytics. It will discuss statistical modeling, prominent algorithms, and visualization approaches to analyze both small- and large-scale data sets generated from transportation systems. Practices of using different data for various real-world traffic/transportation applications and decision making will also be discussed. Prerequisites: Basic probability and statistics (e.g., STAT 330 or ECE 304); any programming language such as C, Python or Java is beneficial but not required.
MSIM 480/580. Introduction to Artificial Intelligence. 3 Credits.
Introduction to concepts, principles, challenges, and research in major areas of artificial intelligence. Areas of discussion include: natural language and vision processing, machine learning, machine logic and reasoning, robotics, expert and mundane systems. Laboratory work required. Prerequisite: Instructor approval.

MSIM 487W. Capstone Design I. 4 Credits.
Part one of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. This is a writing intensive course. Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; MSIM 410, MSIM 331, and MSIM 451.

MSIM 488. Capstone Design II. 3 Credits.
Part two of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. Prerequisites: MSIM 441 and MSIM 487W.

MSIM 495/595. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 496/596. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 497/597. Independent Study in Modeling and Simulation Engineering. 3 Credits.
Individual analytical, computational, and/or experimental study in an area selected by the student. Supervised and approved by the advisor. Prerequisites: Instructor approval.