Bachelor of Science in Computer

Engineering

Computer Engineering (BSCE)

Vishnu K. Lakdawala, Chief Departmental Advisor

Lee Belfore, Computer Engineering Undergraduate Program Director
The computer engineering undergraduate degree program, available in both synchronous online and face-to-face formats, is designed to provide both a broad engineering background and a comprehensive foundation in the technical principles underlying the computer area. Students develop a background through course work in mathematics, the basic sciences, and general engineering. The technical core consists of course work from electrical engineering to address hardware aspects of computer engineering and course work from computer science to address software aspects.

There are two majors available in the Bachelor of Science in Computer Engineering degree: Computer Engineering major and Modeling \& Simulation Engineering major. Adequate elective freedom is available to students in each major. The Computer Engineering major has a builtin minor in computer science, and four technical electives allow for specialization in one or more of four additional areas: computer hardware systems, computer networks, cyber security, or data analytics engineering. The Modeling and Simulation major allows students to select three technical elective courses. In addition, course work in General Education Skills and Ways of Knowing is required to assure a well-rounded program of study.

Students pursuing a Bachelor of Science in Computer Engineering degree (BSCE) are intended in their degree until Engineering Fundamental/ foundational courses (I.E. Calculus I \& II, Calculus-based University Physics I, Programming I, Chemistry I \& II, and Engineering introductory courses) are completed.

Computer Engineering Program Educational Objectives

The computer engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study
2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges.

Student Outcomes

The computer engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Accreditation

The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. (http://www.abet.org)

Requirements

Lower-Division General Education

Written Communication (http://catalog.odu.edu/undergraduate/ 6 requirements-undergraduate-degrees/\#written)
Oral Communication (http://catalog.odu.edu/undergraduate/ 3
requirements-undergraduate-degrees/\#oral)
Mathematics (http://catalog.odu.edu/undergraduate/requirements- 3 undergraduate-degrees/\#math)
Language and Culture (http://catalog.odu.edu/undergraduate/ 0-6
requirements-undergraduate-degrees/\#language)
Information Literacy and Research (http://catalog.odu.edu/ 3
undergraduate/requirements-undergraduate-degrees/\#information)
Human Behavior (http://catalog.odu.edu/undergraduate/
requirements-undergraduate-degrees/\#behavior)
Human Creativity (http://catalog.odu.edu/undergraduate/ 3
requirements-undergraduate-degrees/\#creativity)
Interpreting the Past (http://catalog.odu.edu/undergraduate/ 3
requirements-undergraduate-degrees/\#interpret)
Literature (http://catalog.odu.edu/undergraduate/requirements- 3
undergraduate-degrees/\#literature)
Philosophy and Ethics (http://catalog.odu.edu/undergraduate/ 3
requirements-undergraduate-degrees/\#philosophy)
The Nature of Science (http://catalog.odu.edu/undergraduate/ 8
requirements-undergraduate-degrees/\#nature)
Impact of Technology (http://catalog.odu.edu/undergraduate/ 3
requirements-undergraduate-degrees/\#impact)
The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a built-in minor in Computer Science.

Upper-Division General Education

Met in the major through a built-in minor in computer science.

Requirements for Graduation

Requirements for graduation include the following:

- Minimum of 120 credit hours.
- Minimum of 30 credit hours overall and 12 credit hours of upper-level courses in the major program from Old Dominion University.
- Minimum overall cumulative grade point average of $\mathrm{C}(2.00)$ in all courses taken.
- Minimum overall cumulative grade point average of $\mathrm{C}(2.00)$ in all courses taken toward the major.
- Minimum overall cumulative grade point average of C (2.00) in all courses taken toward a minor.
- Completion of ENGL 110C, ENGL 211C or ENGL 231C, and the writing intensive (W) course in the major with a grade of C or better. The W course must be taken at Old Dominion University.
- Completion of Senior Assessment.

Computer Engineering

Computer Engineering majors must earn a grade of C or better in all 200level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

General Education

Complete lower-division requirements 32-38
Complete upper-division requirements (satisfied in the major through a built-in minor in computer science)

Computer Engineering Major

Complete computer engineering major requirements as shown on 96 the degree program guide
Total Credit Hours
128-134

Computer Engineering Areas of Specialization

Students in the Bachelor of Science in Computer Engineering degree program may focus their studies in one or more specialized areas by electing to take courses in computer hardware systems, computer networks, cyber security, or data analytics engineering.

The computer hardware systems area requires completion of four courses selected from the following: ECE 341, ECE 346, ECE 441, ECE 443, and ECE 483.

The computer networks area requires completion of the following four courses: ECE 355, ECE 451, ECE 452, and ECE 455.

The cyber security area requires completion of four courses selected from the following: ECE 346, ECE 355, ECE 416, ECE 419, ECE 455, ECE 470 and ECE 483.

The data analytics engineering area requires completion of the following four courses: ECE 350, ECE 441, ECE 445, and ECE 450.

Degree Program Guide

The Degree Program Guide is a suggested curriculum to complete this degree program in four years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Computer Engineering

Course	Title	Credit Hours
Freshman		
Fall		
ENGN 110	Explore Engineering and Technology	2
CHEM 121N	Foundations of Chemistry I Lecture	3
CHEM 122N or CHEM 120	Foundations of Chemistry I Laboratory or Foundations of Chemistry I Laboratory for Online Degree Programs	1
MATH 211	Calculus I	4
ENGL 110C	English Composition (grade of C or better required)	3
COMM 101R	Public Speaking	3
	Credit Hours	16
Spring		
ECE 111	Information Literacy and Research for Electrical and Computer Engineering	2

CHEM 123N	Foundations of Chemistry II Lecture	3
MATH 212	Calculus II	4
PHYS 231N	University Physics I	4
ENGN 150	Computer Programming for Engineering Problem Solving	4
	Credit Hours	$\mathbf{1 7}$

Sophomore
Fall

MATH 307 or MATH 280	Ordinary Differential Equations (280) or Transfer Credit for Ordinary Differential Equations	3
ECE 201	Circuit Analysis I	3
ECE 241	Fundamentals of Computer Engineering	4
PHYS 232N	University Physics II	4
ENGL 211C or ENGL 231C	Writing, Rhetoric, and Research or Writing, Rhetoric, and Research: Special Topics	3

Spring		
ECE 202	Circuit Analysis II	3
ECE 287	Fundamental Electric Circuit Laboratory	2
CS 251 or CS 250	Programming with Java or Programming with C++	4
CS 252	Introduction to Unix for Programmers	1
CS 381	Introduction to Discrete Structures	3
Literature Way of Knowing	Credit Hours	$\mathbf{3}$

Junior

Fall

ECE 302	Linear System Analysis	3
ECE 313	Electronic Circuits	4
ECE 341	Digital System Design	3
CS 361	Data Structures and Algorithms	3
Human Creativity Way of Knowing		3
	Credit Hours	16
Spring		
ECE 304	Probability, Statistics, and Reliability	3
ECE 346	Microcontrollers	3
ECE 381	Introduction to Discrete-time Signal Processing	3
CS 350	Introduction to Software Engineering	3
Technical Elective ${ }^{* * *}$		3
	Credit Hours	15
Senior		
Fall		
ECE 484W	Computer Engineering Design I (grade of C or better required)	3

ECE 486	Preparatory ECE Senior Design II	2
ECE 443	Computer Architecture	3
Technical Elective ${ }^{* * *}$		3
ENMA 480	Ethics and Philosophy in Engineering Applications	3
Interpreting the Past Way of Knowing		3
	Credit Hours	17
Spring		
ECE 487	ECE Senior Design II	2
CS 471	Operating Systems	3
Technical Elective ***		3
Technical Elective ***		3
Human Behavior Way of Knowing		3
	Credit Hours	14
	Total Credit Hours	128

ENGN 150	Computer Programming for Engineering Problem Solving ${ }^{3}$	4
	Credit Hours	17
Sophomore		
Fall		
MATH 307 or MATH 280	Ordinary Differential Equations (280) or Transfer Credit for Ordinary Differential Equations	3
ECE 201	Circuit Analysis I	3
PHYS 232N	University Physics II	4
COMM 101R	Public Speaking	3
$\begin{aligned} & \text { ENGL 211C } \\ & \text { or ENGL 231C } \end{aligned}$	Writing, Rhetoric, and Research or Writing, Rhetoric, and Research: Special Topics	3
	Credit Hours	16
Spring		
ECE 202	Circuit Analysis II	3
ECE 287	Fundamental Electric Circuit Laboratory	2
$\begin{aligned} & \text { CS } 251 \\ & \quad \text { or CS } 250 \end{aligned}$	Programming with Java or Programming with $\mathrm{C}++$	4
CS 252	Introduction to Unix for Programmers	1
CS 381	Introduction to Discrete Structures	3
Human Behavior Way of Knowing		3
	Credit Hours	16
Junior		
Fall		
ECE 241	Fundamentals of Computer Engineering	4
ECE 302	Linear System Analysis	3
CS 330	Object-Oriented Design and Programming	3
CS 390	Introduction to Theoretical Computer Science	3
CS 315	Computer Science Undergraduate Colloquium	1
Literature Way of Knowing		3
	Credit Hours	17
Spring		
ECE 313	Electronic Circuits	4
ECE 341	Digital System Design	3
ECE 381	Introduction to Discrete-time Signal Processing	3
CS 361	Data Structures and Algorithms	3
$\begin{aligned} & \text { CS } 450 \\ & \quad \text { or CS } 418 \end{aligned}$	Database Concepts or Web Programming	3
	Credit Hours	16
Senior		
Fall		
MATH 316	Introductory Linear Algebra	3
ECE 304	Probability, Statistics, and Reliability ${ }^{4}$	3

Does not include the University's General Education language and culture requirement. Additional hours may be required.
CHEM 120 is for online program students only.
ECE 111 and other ECE required courses satisfy the Computer Science Information Literacy \& Research requirement of CS 121 G .
ENGN 150 satisfies the CS 150 requirement in Computer Science curriculum.

ECE 304 satisfies the STAT 330 requirement in Computer Science curriculum

ENMA 480 satisfies the Computer Science Philosophy \& Ethics requirement.
Computer Engineering students pursuing the dual degree with Computer Science have two remaining ECE 400-level Technical Elective courses.
ECE 346 satisfies the CS 170 requirement in Computer Science curriculum.
ECE 443 satisfies the CS 270 requirement in Computer Science curriculum.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a builtin minor in computer science and through the completion of a second major/ degree.

Computer engineering and computer science majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

The five-year plan is a suggested curriculum to complete this degree program in five years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.
Computer Engineering Major (BSCE) Dual Degree with Cyber Operations Major (BS Cybersecurity)

Course	Title	Credit Hours
Freshman		
Fall		
ENGN 110	Explore Engineering and Technology	2
CHEM 121N	Foundations of Chemistry I Lecture	3
CHEM 122N or CHEM 120	Foundations of Chemistry I Laboratory ${ }^{1}$ or Foundations of Chemistry I Laboratory for Online Degree Programs	1
MATH 211	Calculus I	4
ENGL 110C	English Composition (grade of C or better required)	3
COMM 101R	Public Speaking	3
	Credit Hours	16
Spring		
ECE 111	Information Literacy and Research for Electrical and Computer Engineering ${ }^{2}$	2
CHEM 123N	Foundations of Chemistry II Lecture	3
MATH 212	Calculus II	4
PHYS 231 N	University Physics I	4
ENGN 150	Computer Programming for Engineering Problem Solving ${ }^{3}$	4
	Credit Hours	17
Sophomore		
Fall		
MATH 307 or MATH 280	Ordinary Differential Equations (280) or Transfer Credit for Ordinary Differential Equations	3
ECE 201	Circuit Analysis I	3
ECE 241	Fundamentals of Computer Engineering	4
PHYS 232N	University Physics II	4
CYSE 200T	Cybersecurity, Technology, and Society	3
	Credit Hours	17

Spring		
ECE 202	Circuit Analysis II	3
ECE 287	Fundamental Electric Circuit Laboratory	2
$\begin{aligned} & \text { CS } 251 \\ & \quad \text { or CS } 250 \end{aligned}$	Programming with Java or Programming with $\mathrm{C}++$	4
CS 252	Introduction to Unix for Programmers	1
CS 381	Introduction to Discrete Structures	3
ENGL 211C or ENGL 231C	Writing, Rhetoric, and Research or Writing, Rhetoric, and Research: Special Topics	3
	Credit Hours	16

Junior		
Fall		
ECE 302	Linear System Analysis	3
ECE 313	Electronic Circuits	4
ECE 341	Digital System Design	3
CS 361	Data Structures and Algorithms	3
$\begin{aligned} & \text { CRJS } 215 \mathrm{~S} \\ & \quad \text { or SOC } 201 \mathrm{~S} \end{aligned}$	Introduction to Criminology or Introduction to Sociology	3
	Credit Hours	16
Spring		
ECE 304	Probability, Statistics, and Reliability	3
ECE 346	Microcontrollers ${ }^{4}$	3
ECE 381	Introduction to Discrete-time Signal Processing	3
CS 350	Introduction to Software Engineering	3
ENMA 480	Ethics and Philosophy in Engineering Applications	3
	Credit Hours	15

Senior		
Fall	Computer Engineering Design I (grade of C or better required)	3
ECE 486	Preparatory ECE Senior Design II	Computer Architecture 5
ECE 443	Cybersecurity Techniques and Operations	3
CYSE 301	Introduction to Networks and 6	3
ECE 355	Data Communications	3

Credit Hours 14

Spring	ECE Senior Design II	2
ECE 487	Cyber Physical System Security ${ }^{6}$	3
ECE 419	Network Engineering and Design 6	3
ECE 455	Operating Systems CS 471	Cyber Law or Cyber Law
CYSE 406 or CRJS 406	3	

Interpreting the Past Way of Knowing		3
	Credit Hours	17
Fifth Year		
Fall		
ECE 416	Cyber Defense Fundamentals ${ }^{6}$	3
CYSE 425W	Cybersecurity Strategy and Policy	3
CS 467 In	Introduction to Reverse Software Engineering	3
ECE 470 or MSIM 470	Foundations of Cyber Security or Foundations of Cyber Security	3
Cyber Approved Program Elective		3
Human Creativity Way of Knowing		3
	Credit Hours	18
Spring		
CS 390 In	Introduction to Theoretical Computer Science	3
CS 466	Principles and Practice of Cyber Defense	3
CYSE 368 or CYSE 494	Cybersecurity Internship or Entrepreneurship in Cybersecurity	3
PHIL 355E C	Cybersecurity Ethics	3
Literature Way of Knowing		3
	Credit Hours	15

Does not include the University's General Education language and culture requirement. Additional hours may be required.
CHEM 120 is for online program students only.
ECE 111 and other ECE required courses satisfy the Cyber Operations Information Literacy \& Research requirement. ENGN 150 satisfies the CS 150 requirement in Cyber Operations curriculum.
ECE 346 satisfies the CS 170 requirement in Cyber Operations curriculum.
ECE 443 satisfies the CS 270 requirement in Cyber Operations curriculum.
These courses are required courses for the Cyber Operations curriculum \& ECE Technical Electives for Computer Engineering curriculum.
7 Cyber Approval Program Elective remaining options:
CS 476, CYSE 407, ECE 483, and IT 417.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a builtin minor in computer science and through the completion of a second major/ degree.

Computer engineering and cyber operations majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

The five-year plan is a suggested curriculum to complete this degree program in five years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their Works.

Computer Engineering Major (BSCE) Dual Degree with Cybersecurity Major (BS Cybersecurity)

Course	Title	Credit Hours
Freshman		
Fall		
ENGN 110	Explore Engineering and Technology	2
CHEM 121N	Foundations of Chemistry I Lecture	3
CHEM 122N or CHEM 120	Foundations of Chemistry I Laboratory ${ }^{1}$ or Foundations of Chemistry I Laboratory for Online Degree Programs	1
MATH 211	Calculus I	4
ENGL 110C	English Composition (grade of C or better required)	3
COMM 101R	Public Speaking	3
	Credit Hours	16
Spring		
ECE 111	Information Literacy and Research for Electrical and Computer Engineering ${ }^{2}$	2
CHEM 123N	Foundations of Chemistry II Lecture	3
MATH 212	Calculus II	4
PHYS 231N	University Physics I	4
ENGN 150	Computer Programming for Engineering Problem Solving	4
	Credit Hours	17

Fophomore		
MATH 307 or MATH 280	Ordinary Differential Equations (280) or Transfer Credit for Ordinary Differential Equations	3
ECE 201	Circuit Analysis I	3
ECE 241	Fundamentals of Computer Engineering	4
PHYS 232N	University Physics II	4
CYSE 200T	Cybersecurity, Technology, and Society	3

Spring		
ECE 202	Circuit Analysis II	3
ECE 287	Fundamental Electric Circuit Laboratory	2
CS 251or CS 250	Programming with Java or Programming with C++	4
CS 252	Introduction to Unix for Programmers Introduction to Discrete Structures	1
CS 381	C	3

ENGL 211C	Writing, Rhetoric, and or ENGL 231C Research or Writing, Rhetoric, and Research: Special Topics

	Credit Hours	$\mathbf{1 6}$
Junior		
Fall	Linear System Analysis	3
ECE 302	Electronic Circuits	4
ECE 313	Digital System Design	3
ECE 341	Data Structures and Algorithms	3
CS 361	Basic Cybersecurity	
CYSE 250	Programming and Networking	3
	Credit Hours	$\mathbf{1 6}$

Spring		
ECE 304	Probability, Statistics, and Reliability	3
ECE 346	Microcontrollers	3
ECE 381	Introduction to Discrete-time Signal Processing	3
CS 350	Introduction to Software Engineering	3
CYSE 201S	Cybersecurity and the Social Sciences	3
CRJS 215S	Introduction to Criminology (Human Behavior Way of Knowing)	
or Introduction to		
Sociology		

Senior

Fall

ECE 484W	Computer Engineering Design I (grade of C or better required)	3
ECE 486	Preparatory ECE Senior Design II	2
ECE 443	Computer Architecture	3
ECE 355	Introduction to Networks and Data Communications	3
ECE 452	Introduction to Wireless Communication Networks 4	3
CYSE 301	Cybersecurity Techniques and Operations	3
	Credit Hours	$\mathbf{1 7}$

CYSE 300	Introduction to Cybersecurity	3
CS 462	Cybersecurity Fundamentals	3
PHIL 355E	Cybersecurity Ethics	3
IDS 300W	Interdisciplinary Theory and Concepts	3
Human Creativity Way of Knowing		3
	Credit Hours	18
Spring		
IDS 493	IDS Electronic Portfolio Project	3
CYSE 368 or CYSE 494	Cybersecurity Internship or Entrepreneurship in Cybersecurity	3
CYSE 425W or POLS 425W	Cybersecurity Strategy and Policy or Cybersecurity Strategy and Policy	3
ENMA 480	Ethics and Philosophy in Engineering Applications	3
Literature Way of Knowing		3
	Credit Hours	15
	Total Credit Hours	167

* Does not include the University's General Education language and culture requirement. Additional hours may be required.
CHEM 120 is for online program students only.
ECE 111 satisfies the Cybersecurity Information Literacy
\& Research requirement.
CRJS 215S or SOC 201S satisfies the University's Human Behavior Way of Knowing requirement.
These courses are required courses for Cybersecurity curriculum (satisfying 2 Principles \& 2 Application Courses) \& ECE Technical Electives for Computer Engineering curriculum.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a builtin minor in computer science and through the completion of a second major/ degree.

Computer engineering and cybersecurity majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.
The five-year plan is a suggested curriculum to complete this degree program in five years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Electrical Engineering (BSEE) Dual Major/Degree with Computer Engineering Major (BSCE)

Course	Title	Credit Hours
Freshman		
Fall	Explore Engineering and Technology	2
ENGN 110	Foundations of Chemistry I Lecture	3
CHEM 121N		

[^0]| Spring | Probability, Statistics, and | |
| :--- | :--- | ---: |
| ECE 304 | Electromagnetics | 3 |
| ECE 323 | Microcontrollers | 3 |
| ECE 346 | Introduction to Discrete-time
 Signal Processing | 3 |
| ECE 381 | Data Structures and Algorithms | 3 |
| CS 361 | Ethics and Philosophy in | |
| ENMA 480 | Engineering Applications | 3 |
| | Credit Hours | 3 |

Senior		
Fall	Computer Engineering Design ECE 484W I	Electrical Engineering Design I
ECE 485W	Preparatory ECE Senior Design II	3
ECE 486	Computer Architecture	2
ECE 443	Microelectronic Materials and Processes	3
Literature Way of Knowing		3
	Credit Hours	3

Spring		
ECE 487	ECE Senior Design II	2
CS 350	Introduction to Software Engineering	3
CS 471	Operating Systems	3
ECE 387	Microelectronics Fabrication Taboratory	3
Human Behavior Way of Knowing	3	
	Credit Hours	3
	Total Credit Hours	$\mathbf{1 7}$

$*$	Does not include the University's General Education language and culture requirement. Additional hours may be required.		
$* *$			
CHEM 120 is for online program students only.		\quad	Electrical \& Computer Engineering students pursuing the
:---			
double major/degree need their final technical elective			
course to be a 400-level ECE technical elective course.			

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a builtin minor in computer science and through the completion of a second major/ degree.

Electrical \& Computer engineering majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

The five-year plan is a suggested curriculum to complete this degree program in five years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their

Students seeking two degrees must complete a minimum of 150 credit hours.

Modeling \& Simulation Engineering Major (BSCE) Dual Degree with Computer Science (BSCS)

Course	Title	Credit Hours
Freshman		
Fall	Explore Engineering and Technology	2
ENGN 110	Foundations of Chemistry I Lecture	3
CHEM 121N	Foundations of Chemistry I Laboratory 1	
or Foundations of		
CHEM 120		
Chemistry I Laboratory for		
Online Degree Programs		
MATH 211	Calculus I	1
ENGL 110C	English Composition (grade of Cor better required)	4
Human Creativity Way of Knowing	3	

Spring		
ECE 111	Information Literacy and Research for Electrical and Computer Engineering 2	2
CHEM 123N	Foundations of Chemistry II Lecture	3
MATH 212	Calculus II	4
PHYS 231N	University Physics I	4
ENGN 150	Computer Programming for Engineering Problem Solving ${ }^{3}$	4
	Credit Hours	$\mathbf{1 7}$

Sophomore
Fall

MATH 307 or MATH 280	Ordinary Differential Equations (280) or Transfer Credit for Ordinary Differential Equations
ECE 201	Circuit Analysis I
PHYS 232N	University Physics II
COMM 101R	Public Speaking or ENGL 231C
Writing, Rhetoric, and Research or Writing, Rhetoric, and Research: Special Topics	3

Spring	Circuit Analysis II	3
ECE 202	Fundamental Electric Circuit Laboratory	2
ECE 287	Programming with Java or Programming with C++	4
CS 251 or CS 250	Introduction to Unix for Programmers	1
CS 252	Introduction to Discrete Structures	3
CS 381		

Human Behavior Way of Knowing	3
Credit Hours	$\mathbf{1 6}$

Junior		
Fall		
ECE 241	Fundamentals of Computer Engineering	4
ECE 302	Linear System Analysis	3
CS 330	Object-Oriented Design and Programming	3
CS 390	Introduction to Theoretical Computer Science	3
CS 315	Computer Science Undergraduate Colloquium	1
Literature Way of Knowing		3
	Credit Hours	17
Spring		
ECE 313	Electronic Circuits	4
ECE 341	Digital System Design	3
ECE 304	Probability, Statistics, and Reliability ${ }^{4}$	3
CS 361	Data Structures and Algorithms	3
$\begin{aligned} & \text { CS } 450 \\ & \quad \text { or CS } 418 \end{aligned}$	Database Concepts or Web Programming	3
	Credit Hours	16

Senior		
Fall	Introductory Linear Algebra	3
MATH 316	Discrete System Modeling and Simulation	3
ECE 306	Introduction to Software Engineering	3
CS 350	Ethics and Philosophy in Engineering Applications 5	3
ENMA 480	CCE Technical Elective I ${ }^{6}$	$\mathbf{3}$
	$\mathbf{1 5}$	

Spring		
ECE 320	Continuous System Modeling and Simulation	3
ECE 346	Microcontrollers 7	
ECE 348	Simulation Software Design	3
CS 417	Computational Methods and Software	3
CS 355	Principles of Programming Languages	3
CS Upper Level Elective I	Credit Hours	3
	$\mathbf{1 8}$	

Fifth Year		
Fall	Computer Graphics and Visualization	3
ECE 406	Computer Architecture ${ }^{8}$	3
ECE 443	Computer Engineering Design I	3
ECE 484W	Preparatory ECE Senior Design II	2
ECE 486	Professional Workforce Development I	3
CS 410	Dic	3

CS Upper Level Elective II		3
	Credit Hours	$\mathbf{1 7}$
Spring		
ECE 487	ECE Senior Design II	2
CS 471	Operating Systems	3
CS 411W	Professional Workforce Development II	3
CS Upper Level Elective III		3
Interpreting the Past Way of Knowing	3	
	Credit Hours	$\mathbf{1 4}$
	Total Credit Hours	$\mathbf{1 6 2}$

* Does not include the University's General Education language and culture requirement. Additional hours may be required.
CHEM 120 is for online program students only.
ECE 111 and other ECE required courses satisfy the Computer Science Information Literacy \& Research requirement of CS 121 G .
ENGN 150 satisfies the CS 150 requirement in Computer Science curriculum.

ECE 304 satisfies the STAT 330 requirement in Computer Science curriculum

ENMA 480 satisfies the Computer Science Philosophy \& Ethics requirement.
Computer Engineering - Modeling \& Simulation
Engineering Major students pursuing the dual degree with Computer Science have one remaining ECE 400-level Technical Elective course.
ECE 346 satisfies the CS 170 requirement in Computer Science curriculum.
ECE 443 satisfies the CS 270 requirement in Computer Science curriculum.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major. The upper-division General Education requirement is met through a builtin minor in computer science and through the completion of a second major/ degree.

Modeling \& Simulation Engineering and Computer Science majors must earn a grade of C or better in all 200-level ECE courses and all CS courses prior to taking the next course in the sequence.

Any ECE course registration issues are to be resolved with the ECE Academic Coordinator and Program Manager.

The five-year plan is a suggested curriculum to complete this degree program in five years. It is just one of several plans that will work and is presented only as broad guidance to students. Each student is strongly encouraged to develop a customized plan in consultation with their academic advisor. Additional information can also be found in Degree Works.

Linked Bachelor's/Master's Degree Programs

These are designed to allow qualified students to secure a space in a master's program available in the Frank Batten College of Engineering and Technology while they are still pursuing their undergraduate degrees. An eligible student can choose a master's program in the same discipline as his/her bachelor's program or in a complementary discipline. Subject to the approval of the undergraduate and graduate program directors, a student enrolled in a linked program can count up to six credit hours of course work towards both the undergraduate and the graduate degrees. Full-time

9 Computer Engineering (BSCE)

students may be able to complete the requirements for the bachelor's degree in four years and the master's degree in one additional year. Students in linked programs must earn a minimum of 150 credit hours (120 discrete credit hours for the undergraduate degree and 30 discrete credit hours for the graduate degree).

Students who are matriculated in an undergraduate major in the Frank Batten College of Engineering and Technology with a GPA of at least 3.00 overall and 3.00 in the major are eligible to apply for admission to a linked bachelor's/master's program. Transfer students who desire to be admitted to a linked program at the time they join an undergraduate major at Old Dominion University are eligible to apply if their overall GPA at their previous institution is 3.25 or higher. Prerequisite courses may be required for engineering technology majors to pursue a master's degree in engineering.

Continuance in a linked bachelor's/master's program requires maintenance of a GPA of 3.00 or higher overall and in the major.

Bachelor-to-PhD Programs

For a select number of exceptionally well-qualified students, the college has established a linked doctoral program that enables students to be admitted directly into the PhD program upon completion of the baccalaureate degree. A select number of exceptionally well-qualified students can be admitted to the Bachelor/PhD program in their junior year while they are pursuing one of the undergraduate programs at Old Dominion University. This program encourages admitted students to work closely with faculty members and pursue a research experience. Just as in the linked Bachelor/MS program, six credit hours of graduate course work may again be counted towards the undergraduate degree and doctoral course work mentioned above for the Bachelor/PhD program. For linked bachelor's to doctoral programs, students must earn a minimum of 198 credit hours (120 discrete credit hours for the undergraduate degree and 78 discrete credit hours for the graduate degree). Students in these programs must maintain a GPA of 3.50 or better throughout their bachelor's and doctoral studies.

The student may opt to obtain the master's degree along the way to the doctorate. To obtain the master's degree, the student must utilize the six graduate credits obtained as part of their undergraduate program, use 18 credits of the graduate course work that is part of the PhD , and also write a master's thesis.

[^0]: 7 Computer Engineering (BSCE)

