Frank Batten College of Engineering and Technology
Web Site: http://www.odu.edu/eng (http://www.odu.edu/eng/)
1105 Engineering Systems Building
757-683-3789
Kenneth Fridley, Dean
To be Named, Associate Dean for Undergraduate Education
Khan Iftekharuddin, Associate Dean for Research & Graduate Education
Anthony Dean, Assistant Dean for Administration

Mission Statement
In accordance with the mission of Old Dominion University, the Frank Batten College of Engineering and Technology promotes the advancement of engineering knowledge, both by its creation and dissemination and by providing successful graduates and a continuously improving learning environment to its constituents, while maintaining ethical, multicultural and global standards.

Overview
The Frank Batten College of Engineering and Technology at Old Dominion University offers degrees in engineering and engineering technology.

The graduate engineering programs at Old Dominion University are specifically designed to take advantage of and enhance unique assets in the Hampton Roads area, a complex of seven major cities. These assets include: 1) a strong military presence with multiple high technology facilities, particularly as it relates to modeling and simulation; 2) the NASA Langley Research Center with its focus on aeronautics and space exploration; 3) the Jefferson Laboratories, a major center of nuclear physics and home of a major Free Electron Laser; 4) one of the major international deep-water ports on the east coast of the United States; 5) a major ship building and ship repair industry, including Newport News Shipbuilding, the only builder of nuclear aircraft carriers in the U.S.; 6) a major high technology industry base; and 7) a variety of commercial enterprises. These assets have enabled the development of distinctive engineering curricula.

Programs of Study
Below is the list of programs of study offered at master’s and/or doctoral levels. Master's level degrees include Master of Engineering (ME), Master of Engineering Management (MEM) and Master of Science (MS). Doctoral level degrees include Doctor of Engineering (DEng) and Doctor of Philosophy (PhD) with concentrations in:

- Mechanical and Aerospace Engineering Department - MAE
 - Aerospace Engineering - AE (•MS/ME• PhD)
 - Mechanical Engineering - ME (• MS /ME• PhD)

- Civil and Environmental Engineering Department - CEE
 - Civil and Environmental Engineering - CEE (• PhD)
 - Civil Engineering - CE (• MS)
 - Environmental Engineering - (•MS) Online, On-campus

- Electrical and Computer Engineering Department - ECE
 - Electrical and Computer Engineering - ECE (• MS • DEng • PhD)
 - Biomedical Engineering - BME (• ME • MS • PhD)
 - Cybersecurity (•MS • DEng.)
 - Modeling & Simulation - MSIM (• MS • DEng • PhD)

- Engineering Management and Systems Engineering Department - EMSE
 - Engineering Management - ENMA (• MEM • MS)
 - Engineering Management and Systems Engineering - EMSE (• DEng • PhD)
 - Systems Engineering - SysE (• ME)

Linked Degree Programs
- Bachelor’s to Master’s programs
- Bachelor’s to Ph.D. programs

Graduate Certificate Programs
- The interdisciplinary Advanced Engineering Certificate Program offers the following tracks,
 - Biomedical Engineering
 - Energy Systems
- Graduate Certificate in Engineering Management
- Graduate Certificate in Naval Architecture and Marine Engineering
- Graduate Certificate in Coastal Engineering
- Graduate Certificate in Entrepreneurship and Innovation in Engineering
- Graduate Certificate in Mission Analysis & Engineering
- Graduate Certificate in Modeling and Simulation Engineering
- Graduate Certificate in Project Management

Collaborative Programs
Cardinal Education

Master’s Programs
The Batten College of Engineering and Technology grants the following master’s degrees: Master of Science in Engineering, Master of Engineering, Master of Science in Engineering Management, and Master of Engineering Management. The programs of study leading to the master’s degree are listed above. Interested students should refer to the individual program section of this catalog for admission information and degree requirements.

Linked Bachelor’s to Master’s Degree Programs
These programs are designed to allow qualified students to secure a space in a master’s program available in the Frank Batten College of Engineering and Technology while they are still pursuing their undergraduate degrees. An eligible student may choose a master’s program available in the Frank Batten College of Engineering and Technology while they are still pursuing their undergraduate degrees. An eligible student can choose a master’s program in the same discipline as his/her bachelor’s program or in a complementary discipline. Full-time students can complete the requirements for the bachelor’s degree in four years and for the master’s degree in one additional year. Students should consult with their undergraduate advisors and the graduate program director of the master’s program they wish to pursue to determine if the linked program would be beneficial.

Students who are matriculated in an undergraduate major in the Frank Batten College of Engineering and Technology with a GPA of at least 3.00 overall and 3.00 in the major are eligible to apply for admission to a linked bachelor’s/master’s program. Transfer students who desire to be admitted to a linked program at the time they join an undergraduate major at Old Dominion University are eligible to apply if their overall GPA at their previous institution is 3.25 or higher. Pre-requisite courses may be required for engineering technology majors to pursue a Master’s degree in engineering.

Continuance in a linked bachelor’s/master’s program requires maintenance of a GPA of 3.00 or higher overall and in the major.

Doctor of Philosophy (Ph.D.) Programs
The Batten College of Engineering and Technology grants the Doctor of Philosophy degree in Engineering. The programs of study leading to the Ph.D. degree are listed in Table 1. All Ph.D. programs require a minimum of 24 credit hours of dissertation research and 24 credits of coursework beyond an MS degree. Three-fifths of these courses (15 credit hours) must be completed at the 800 level. Interested students should refer to
Consideration for admission to the Doctor of Engineering program with a concentration in Cybersecurity requires the following:

1. A master of science degree from an accredited university in the United States or an equivalent foreign institution;
2. Official copies of all transcripts
3. Coursework or a minimum of two years’ work experience in cybersecurity and/or related areas;
4. Two letters of recommendation from individuals familiar with the applicant's professional and/or academic background;
5. A current resume;
6. A statement of professional goals;
7. GRE Scores, with a 50% or better attainment on quantitative reasoning;
8. English proficiency requirement, if the applicant's native language is not English.

Continuation and Graduation Requirements
The continuation requirements are the same as the continuation requirements for the Doctor of Philosophy programs. The graduation requirements for the Doctor of Engineering degree are as follows:

1. Satisfactory completion of a minimum of 48 credit hours of approved graduate work beyond the master’s degree, including the doctoral project.
2. Satisfactory performance on a diagnostic examination at the completion of nine credit hours of coursework. The purpose of this examination is to determine if the student has adequate background to pursue a doctoral degree. The diagnostic examination may only be repeated once.
3. Satisfactory completion of a written and oral candidacy examination. The student will take the candidacy examination when he/she is within six credit hours of completing all the required coursework. The candidacy examination may only be repeated once.
4. Preparation and successful defense of a project concept proposal. The student will be required to prepare and present a concept proposal related to the work that will be undertaken for the doctoral project. The concept proposal will be defended before the doctoral committee.
5. Submission of progress reports as deemed necessary by the doctoral committee.
6. Written report of the project results. The doctoral project shall be documented in a manner consistent with advanced, professional work. The project report will follow the standard format for Old Dominion University dissertations and theses.
7. Comprehensive oral defense of the doctoral project before the student’s doctoral committee and a general audience.

The applied doctoral project must successfully demonstrate the student’s mastery of the subject area and his/her ability to apply advanced technical knowledge to identify, formulate, and solve novel and complex engineering problems. The project must address a complex but practical problem currently faced by the public, industry, or government, and it must provide a solution that satisfies all the technical, social, political, economic, safety, sustainability, and environmental requirements and/or constraints. The doctoral project committee will have at least three Old Dominion University faculty members certified for graduate instruction; two faculty members must be from the major department. The committee must also have at least one non-University person with special knowledge of the project subject area.

Interdisciplinary Graduate Certificate Programs
The college has established several certificate programs that enable students to specialize in technical areas of current interest to industry, government and academia. Both non-degree and degree-seeking students can enroll in the certificate programs. The programs provide the opportunity for practicing engineers to further their knowledge and become more competent in their profession.
Advanced Engineering Certificate in Biomedical Engineering

The Graduate Certificate in Biomedical Engineering Program offers students and professionals the opportunity to further their knowledge with advanced study in the growing area of Biomedical Engineering. The program is designed to provide well-rounded instruction in several key facets of Biomedical Engineering. Those who complete the program receive the Advanced Engineering Certificate in Biomedical Engineering from Old Dominion University and a letter of recognition from the Batten College of Engineering and Technology. Courses taken for the certificate program may later be applied to the Ph.D. degree in Biomedical Engineering.

Certificate Program Admission Requirements

• Bachelor of Science degree (or equivalent) in an engineering field or undergraduate degree in another relevant STEM field.
• Prerequisites for applicants from non-engineering fields include college-level mathematics, calculus-based physics, and chemistry or biology.
• Students enrolled in the Biomedical Engineering Ph.D. or Master of Engineering programs at ODU are not eligible for the certificate.

Certificate Program Curriculum Requirements

• Twelve credit hours of graduate course work
• A grade point average of 3.0 or better

BME Fundamentals (select two) 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 720</td>
<td>Modern Biomedical Instrumentation</td>
</tr>
<tr>
<td>BME 721</td>
<td>Mathematical Modeling in Physiology</td>
</tr>
<tr>
<td>BME 726</td>
<td>Biomaterials</td>
</tr>
</tbody>
</table>

BME Electives (select two)* 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 554</td>
<td>Introduction to Bioelectronics</td>
</tr>
<tr>
<td>BME 720</td>
<td>Modern Biomedical Instrumentation</td>
</tr>
<tr>
<td>BME 721</td>
<td>Mathematical Modeling in Physiology</td>
</tr>
<tr>
<td>BME 724</td>
<td>Neural Engineering</td>
</tr>
<tr>
<td>ECE 562</td>
<td>Introduction to Medical Image Analysis (MIA)</td>
</tr>
<tr>
<td>ECE 564</td>
<td>Biomedical Applications of Low Temperature Plasmas</td>
</tr>
</tbody>
</table>

Total Hours 12

* Appropriate course substitutions may be considered with permission of the Graduate Program Director.

Advanced Engineering Certificate in Cyber Systems Security

The certificate program aims to provide a thorough understanding the cyber security threats faced by the stand-alone computer systems, networked systems, IT infrastructure, and cyber physical systems having embedded computer systems operated by individuals, small businesses and large enterprises along with the knowledge required to defend against these threats. The course will enable participants to learn state of the art techniques necessary for analyzing cyber security risks, preventing, detecting and recovering from cyber attacks through class room instructions and hands-on lab work. The program uniquely accommodates students from engineering, math and sciences as well as practicing engineers and managers. The course will make use of ODU’s multidisciplinary strengths in the fields of Cyber Systems, Computer Engineering, Software Engineering and Modeling and Simulation. This program is designed both as a complement for students working on graduate degrees and for those personnel working on information and cyber systems used in industry, small businesses, healthcare, government, military and homeland security. It is anticipated that students will complete the program in 2 semesters (full time enrollment) or 2 years (part-time enrollment or working to complement an existing graduate program).

Certificate Program Admission Requirements

All applicants admitted to the certificate program must have earned a baccalaureate degree in engineering, mathematics, science, or a related STEM field from a regionally-accredited institution or an equivalent degree from a foreign institution. Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT.

Certificate Program Curriculum Requirements

The Graduate Certificate in Cyber Security requires completion of 12 credit hours of graduate course work, consisting of two core courses and two elective courses from the course list below.

Required Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIM 570</td>
<td>Foundations of Cyber Security</td>
</tr>
<tr>
<td>MSIM/ENMA 670</td>
<td>Cyber Systems Engineering</td>
</tr>
</tbody>
</table>

Electives (Select two of the following): 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 516</td>
<td>Cyber Defense Fundamentals</td>
</tr>
<tr>
<td>ECE 519</td>
<td>Cyber Physical System Security</td>
</tr>
<tr>
<td>MSIM 673</td>
<td>Threat Modeling and Risk Analysis</td>
</tr>
</tbody>
</table>

Total Hours 12

Advanced Engineering Certificate in Energy Systems

The Graduate Certificate in Energy Systems Engineering Program offers students and professionals the opportunity to further their knowledge with advanced study in the growing area of Energy Engineering. The program is aimed at providing understanding of energy engineering and the increasing role of energy engineers in addressing growing energy needs. The new skills and advanced understanding developed in class will prepare students for employment in rapidly growing energy industries.

Those who complete the Program receive the Advanced Engineering Certificate in Energy Systems Engineering from Old Dominion University and a letter of recognition from the Batten College of Engineering and Technology. Courses taken for the certificate program may also be applied to master’s level or doctoral graduate engineering programs at ODU, where they meet the program requirements.

Certificate Program Admission Requirements

• Baccalaureate degree in engineering—or a related field—from a regionally-accredited institution or an equivalent degree from a foreign institution.
• Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT.

Certificate Program Curriculum Requirements

• Twelve credit hours of graduate course work
• A grade point average of 3.0 or better

Energy Engineering Core Courses 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 671</td>
<td>Carbon-Free Clean Energy</td>
</tr>
<tr>
<td>ENGN 672</td>
<td>Energy Systems Management</td>
</tr>
</tbody>
</table>

Energy Engineering Electives (select two)* 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 513</td>
<td>Energy Conversion</td>
</tr>
<tr>
<td>CEE 559</td>
<td>Biofuels Engineering</td>
</tr>
<tr>
<td>ENGN 697</td>
<td>Independent Study in Energy Engineering</td>
</tr>
<tr>
<td>ECE 772</td>
<td>Fundamentals of Solar Cells</td>
</tr>
</tbody>
</table>

Total Hours 12

* Appropriate course substitutions may be considered with permission of the Graduate Program Director.
Certificate in Engineering Management

This program provides the opportunity for practicing engineers to further their knowledge and become more competent in managing socio-technical systems. The certificate program is open to both degree-seeking and non-degree-seeking graduate students. Certain courses taken for the certificate program may later be applied to the master’s degree in Engineering Management for students that get formally admitted to the master in engineering management program. The Engineering Management Certificate Program consists of 12 credit hours of graduate level course work. The four courses comprising the certificate program are offered on a regular basis to enable the completion of the program in two years.

Graduate Certificate Admission Requirements

Admission to the program requires a Bachelor of Science degree in engineering (or equivalent). The certificate consists of four pre-approved graduate level courses contributing to an emphasis area that can be interdisciplinary.

For more information please contact:

Graduate Program Director for Master's Programs
Old Dominion University
2101 Engineering Systems Building
Norfolk, VA 23529

Graduate Certificate Course Requirements

The Graduate Certificate in Engineering Management requires the completion of 12 credit hours at the graduate level. The courses are offered via distance learning.

Select 4 of the following: *

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 600</td>
<td>Cost Estimating and Financial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 601</td>
<td>Analysis of Organizational Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 602</td>
<td>Systems Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 603</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 604</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 614</td>
<td>Quality Systems Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12

* Appropriate course substitutions may be considered with permission of the Graduate Program Director.

A grade point average of 3.0 or better is required to earn the certificate.

Certificate in Naval Architecture and Marine Engineering

In order to provide the opportunity for practicing engineers to further their knowledge and to become more competent in the fields of Naval Architecture and Marine Engineering, the Department of Mechanical and Aerospace Engineering offers a non-degree graduate level certificate program in Naval Architecture and Marine Engineering. Admission to the program requires a Bachelor of Science degree (or equivalent) in Mechanical Engineering, Aerospace Engineering, Naval Architecture and Marine Engineering, or a related field. The students must complete four 3-credit graduate-level courses to earn a certificate. The certificate program credits will be transferable to the Master’s degree programs in Mechanical and Aerospace Engineering. The certificate program offers two tracks:

1. Naval Architecture
2. Marine Engineering

To meet the requirements of either track, students must complete a common required course, Engineering Mathematics or MAE 608 (http://catalog.odu.edu/search/?P=MAE%20608), Applied Mathematics for Engineers and three 3-credit courses described below.

Naval Architecture Track:

Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 550/888</td>
<td>Principles of Naval Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following: 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 788</td>
<td>Computational Intelligence for Engineering Design Optimization Problems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 695</td>
<td>Topics in Mechanical and Aerospace Engineering (Numerical Marine Hydrodynamics)</td>
<td>3</td>
</tr>
<tr>
<td>MAE 695</td>
<td>Topics in Mechanical and Aerospace Engineering (Ship Resistance and Propulsion)</td>
<td>3</td>
</tr>
<tr>
<td>MAE 695</td>
<td>Topics in Mechanical and Aerospace Engineering (Dynamics of Marine Crafts)</td>
<td>3</td>
</tr>
<tr>
<td>MAE 695</td>
<td>Topics in Mechanical and Aerospace Engineering (Marine Structures)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 9

Marine Engineering Track:

Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 511</td>
<td>Mechanical Engineering Power Systems Theory and Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following: 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 512</td>
<td>Environmental Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 517</td>
<td>Propulsion Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 602</td>
<td>Fluid Dynamics and Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 722/822</td>
<td>Theory and Design of Turbomachines</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 9

Graduate Certificate in Coastal Engineering (CECP)

CECP provides for practicing engineers the opportunity to study Coastal Engineering at the graduate level to help them in the practice of their engineering profession. The Certificate demonstrates a basic level of the physical sciences, engineering, economics, the environment, and the institutional-political-social and aesthetic constrains that influence all coastal engineering design. The Certificate may also provide the necessary credentials for continuing education by state licensing boards and professional organizations.

Graduate Certificate Admission Requirements

An undergraduate degree from an accredited university in Engineering (Civil, Environmental Ocean, etc.) or the Oceanography Sciences (Oceanography, Geology, etc.) is preferred. Experienced professionals in the Coastal Engineering field may also apply.

Graduate Certificate Course Requirements

A series of four (4) graduate level courses in the specialty area of Coastal Engineering within Civil Engineering are offered. All are offered online over the internet, in synchronous (Visual Streaming) mode, over a two year period (spring, fall semesters). The Certificate is earned after successful completion of the four courses listed below. The Cumulative Grade Point Average (GPA) of the four courses must be a minimum of a B average (3.0) to earn the Certificate. All are regularly scheduled graduate courses in the Master and Ph.D. programs at ODU.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 582</td>
<td>Introduction to Coastal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 787</td>
<td>Dredging and Beach Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 788</td>
<td>Coastal Hydrodynamics and Sediment Processes</td>
<td>3</td>
</tr>
<tr>
<td>CEE 782</td>
<td>Design of Coastal Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12
An overall grade point average of 3.0 or better is required to earn the certificate.

Graduate Certificate in Entrepreneurship and Innovation in Engineering

Entrepreneurship and innovation are expected to be primary forces in the creation of new business ventures that drive growth and progress in the worldwide economy. Experienced engineering professionals pursuing this certificate may seek to implement their ideas in a multitude of organizational structures. Many may seek outlets outside their current work environments where they can bring their ideas to fruition.

This certificate program provides an integrated approach to teaching, mentoring and encouraging engineering professionals. It introduces engineering students and students from other disciplines with an engineering background to a wide range of entrepreneurial approaches. The certificate’s content addresses the formation of start-up ventures, the growth of existing ventures, and the continued viability of mature, technical enterprises.

Graduate Certificate Admission Requirements

All applicants admitted to the certificate program must have earned a baccalaureate degree from a regionally-accredited institution or an equivalent degree from a foreign institution. Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT. The program offers the opportunity to hone planning, decision-making, and/or execution skills needed in extremely transient and uncertain situations. It provides the student with the necessary understanding to manage engineering and systems engineering activities such that mission supporting capabilities are achieved in even the most complex conditions. The program is designed to elevate understanding of the difficulties that are endemic to engineering and systems engineering activities.

The Graduate Certificate in Entrepreneurship and Innovation in Engineering requires the completion of the courses listed below totaling 12 credit hours at the graduate level.

- ENGN 620 The Entrepreneurial Engineer 2
- ENGN 623 Leadership and Human Dynamics for the Entrepreneur 2
- ENGN 625 Business Planning for Entrepreneurial Engineers 2
- Marketing and Sales Management for Entrepreneurs* 2
- Operations and Supply Chain Management for Entrepreneurs* 2
- Financial Management for Entrepreneurs* 2

Total Hours 12

* New Strome College of Business courses.

An overall grade point average of 3.0 or better is required to earn the certificate.

Graduate Certificate in Mission Analysis & Engineering

The graduate certificate in Mission Analysis and Engineering provides students and professionals with the necessary understanding to manage engineering and systems engineering activities such that mission supporting capabilities are achieved in even the most complex conditions. The program is designed to elevate understanding of the difficulties that are endemic to working with complex, socio-technical systems, or system of systems, in extremely transient and uncertain situations. It provides the student with the opportunity to hone planning, decision-making, and/or execution skills necessary to work transformational environments. It is recommended that students intending to take the certificate contact the certificate director to develop a plan of study that will most benefit the student’s goals.

Transferability of courses: The certificate is listed as a graduate certificate by the State Council for a higher Education in Virginia. The program offers "for-credit" graduate-level courses listed in the Old Dominion University Graduate Catalog. Courses taken for the certificate may be used towards graduate studies with approval of the student’s Advisor or Graduate Program Director. Non-degree seeking students completing the certificate may later apply the credit hours earned towards graduate degrees in engineering.

and other disciplines with approval of the Graduate Program Director of the program to which the student has been admitted or is seeking admission.

Admission Requirements

All degree-seeking applicants admitted to the certificate program must meet ODU requirements for graduate admission: an earned baccalaureate degree from a regionally accredited institution or an equivalent degree from a foreign institution in engineering or engineering technology is required. Those whose native language is not English must submit a minimum score of 230 on the computer based TOEFL or 80 on the TOEFL iBT. Non-degree seeking students are required to have these same credentials, though documentation is not required. Ultimately, students must apply to the certificate program in order to obtain the certificate.

Curriculum Requirements

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 650 Mission Analysis and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 750 System of Systems Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Courses</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 660 Systems Architectures</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 715 Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 755 Human System Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 777 Complex System Governance</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12

Graduate Certificate in Modeling and Simulation Engineering

The Graduate Certificate in Modeling and Simulation Engineering is designed for those who meet the admission requirements of the modeling and simulation master’s program and wish to broaden their knowledge of modeling and simulation related principles and practices without pursuing a graduate degree. This is a 12 credit hour non-degree program offered by the Department of Modeling, Simulation and Visualization Engineering. The certificate program is open to both degree-seeking and non-degree-seeking graduate students. Certain courses taken for the certificate program may later be applied to the master’s degree in modeling and simulation.

Graduate Certificate Admission Requirements

Students should have either an undergraduate degree from a regionally accredited institution and should have a mathematical background through calculus, along with a calculus based probability and statistics course. Students should submit a graduate non-degree application through the Office of Admissions, and then submit a departmental application with copies of unofficial transcripts from all previous coursework to the MSVE Department. Departmental applications are available online on the MSVE Department’s website – http://eng.odu.edu/msve (http://eng.odu.edu/msve/) and should be sent to:

Academic Advisor and Program Manager
MSVE Department
Old Dominion University
1300 Engineering and Computational Sciences Building
Norfolk, VA 23529

Graduate Certificate Course Requirements

The Graduate Certificate in Modeling and Simulation Engineering requires the completion of 12 credit hours at the graduate level. The course requirements are:

Select three courses from the following: 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIM 601</td>
<td>Introduction to Modeling and Simulation</td>
</tr>
<tr>
<td>MSIM 602</td>
<td>Simulation Fundamentals</td>
</tr>
<tr>
<td>MSIM 510</td>
<td>Model Engineering</td>
</tr>
<tr>
<td>MSIM 603</td>
<td>Simulation Design</td>
</tr>
<tr>
<td>MSIM 541</td>
<td>Computer Graphics and Visualization</td>
</tr>
<tr>
<td>MSIM 551</td>
<td>Analysis for Modeling and Simulation</td>
</tr>
</tbody>
</table>
An overall GPA of 3.0 or better is required to earn the graduate certificate in modeling and simulation engineering.

Graduate Certificate in Project Management

The project management graduate certificate program is designed to facilitate learning essential and contemporary concepts, tools, and processes to manage projects in modern organizations. Courses in the program cover a mix of technical and human topics that are needed for successful project management. Students looking to enroll in the certificate program must meet the admission requirements of Old Dominion University at the graduate level to obtain the Graduate Certificate in Project Management. Certain courses taken for the certificate program may later be applied to the master's degree in Engineering Management for students that get formally admitted to the master in engineering management program. The graduate certificate in Project Management consists of 12 credit hours of graduate level course work. The four courses comprising the certificate program are offered on a regular basis to enable the completion of the program in two years.

Graduate Certificate Admission Requirements

Admission to the program requires a Bachelor of Science degree in engineering (or equivalent). The certificate consists of four pre-approved graduate level courses contributing to an emphasis area that can be interdisciplinary. A grade point average of 3.0 or better is required to earn the certificate.

Graduate Certificate Course Requirements

The Graduate Certificate in Engineering Management requires the completion of 12 credit hours at the graduate level. The courses are offered via distance learning. The four required courses are listed below:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 604</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 780</td>
<td>Leadership for Engineering Managers</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 410/510</td>
<td>Agile Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 700/800</td>
<td>Economic Analysis of Capital Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Optional

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 601</td>
<td>Analysis of Organizational Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 12

An overall GPA of 3.00 or better is required to earn the graduate certificate in project management.

ENGINEERING Courses

ENGM 602T. Engineering for Secondary School Teachers. 1-3 Credits.

An introduction to foundations of design and civil, environmental, electrical, mechanical, and computer engineering. The course will consist of secondary school appropriate content and concepts that directly correlate with the state and local school systems' science and mathematics curriculum. May lead to a Project Lead the Way certification when applicable. Prerequisites: Bachelor's degree or permission of the instructor.

ENGM 603T. Engineering Seminar for Teachers. 1-3 Credits.

An introductory seminar on specific multi-disciplinary or interdisciplinary engineering topics for MS or HS teachers. Prerequisites: Bachelor's degree or permission of the instructor.

ENGM 611. Financial Engineering. 3 Credits.

Financial engineering management, accounting, financial reports and analysis, capital budgeting, investment decisions.

ENGM 612. Analysis of Organizational Systems. 3 Credits.

Introduction to fundamental concepts in the analysis of organizations. Examination of social, structural, procedural, and environmental aspects by systems approach. Modules include: History and systems of organizations and management; Basic organizational systems and models; Organizational behavior models; Integration of systems perspectives; and Organizational structures.

ENGM 620. The Entrepreneurial Engineer. 2 Credits.

This course is designed to provide engineers and engineering technologists with the knowledge, skills and experience needed to create products and services that will be attractive to consumer markets and to bring those products and services to market in new commercial ventures. Topics covered include: how to evaluate entrepreneurial opportunities in the engineering field; elements of a viable business plan; governance models; management succession planning; use of social media; and creating an ethical engineering enterprise in the global economy.

ENGM 621. The Entrepreneurial Engineer. 2 Credits.

This course is designed to provide engineers and engineering technologists with the knowledge, skills and experience needed to create products and services that will be attractive to consumer markets and to bring those products and services to market in new commercial ventures. Topics covered include: How to evaluate entrepreneurial opportunities in the engineering field; elements of a viable business plan; governance models; management succession planning; use of social media; and creating an ethical engineering enterprise in the global economy.

ENGM 623. Leadership and Human Dynamics for the Entrepreneurial Engineer. 2 Credits.

This course covers the concepts, skills, and characteristics of effective and successful entrepreneurial leaders in the 21st century. The course covers leadership for entrepreneurial engineers through case studies and literature review in areas such as the fundamentals of leadership, ethical leadership, social capital, emotional intelligence, and three-dimensional leadership.

ENGM 625. Business Planning for Entrepreneurial Engineers. 2 Credits.

This course is the capstone of the Entrepreneurship and Innovation graduate certificate for engineers. With data and expertise through prior certificate coursework, students develop and present a comprehensive and viable entrepreneurial business plan in engineering. Topics covered include: Product lifecycle management, marketing and strategic planning, entrepreneurial finance, and effective presentation techniques. The final presentation is delivered to a panel of ODU faculty and engineering practitioners who provide sound feedback to the student.

ENGM 630. Advanced Bioelectrics. 3 Credits.

A one-semester course covering advanced topics in bioelectrics. The course will cover advanced application of pulsed power and plasma in the medical, biological and environmental fields. (Cross-listed with ECE 630). Prerequisites: bachelor's degree in physics, engineering or biology.

ENGM 671. Carbon-Free Clean Energy. 3 Credits.

Nuclear power and nuclear energy; solar energy; wind energy; geothermal energy; hydroelectric power; hydrogen as energy resource; hydrogen fuel cells; hybrid technologies; global economics and environmental impacts of carbon-free energy.

ENGM 672. Energy Systems Management. 3 Credits.

System management principles; energy systems safety and security; automation and control; environmental effects and comparative risk assessment; energy storage; carbon sequestration; energy systems scale up issues; energy systems integration; hybrid systems; energy systems optimization; effects of public policies on energy systems management.

ENGM 695. Multidisciplinary Topics in Engineering. 1-3 Credits.

Special interdisciplinary or multidisciplinary topics of interest with emphasis on emerging areas in engineering.

ENGM 697. Independent Study in Energy Engineering. 3 Credits.

Individual analytical, experimental, computational and/or design study selected by the student and supervised by the course instructor.
ENGN 811. Methodologies for Advanced Engineering Projects. 3 Credits.
Critical evaluation of published literature; experimental design and analysis; optimization methods; pre-project planning; definition of scope, projects risks, technical, economical, social, and political constraints; execution strategies; effective proposal development. Prerequisite: Graduate standing.

ENGN 812. Engineering Leadership. 3 Credits.
Effective communication techniques, strategic planning, building collaborative relationships, conflict management, building high-performance teams, risk management, managing innovations. Prerequisites: Graduate standing.

ENGN 813. Engineering Ethics. 3 Credits.
Scope of engineering ethics, moral reasoning and ethical theories, the engineer's responsibility for safety, responsibilities to the employer, responsibilities to the public, rights of engineers, global issues, professional codes of ethics, case studies. Prerequisites: Graduate standing.

ENGN 998. Master's Graduate Credit. 1 Credit.
This course is a pass/fail course for master's students in their final semester. It may be taken to fulfill the registration requirement necessary for graduation. All master's students are required to be registered for at least one graduate credit hour in the semester of their graduation.