The program educational objectives describe the expected accomplishments of graduates during the first few years after graduation. The educational objectives of the modeling and simulation engineering program, established with participation of all program constituencies, are consistent with the mission of Old Dominion University and the Department of Modeling, Simulation and Visualization Engineering.

The program educational objectives of the modeling and simulation engineering program are as follows.

Within a few years after graduation, modeling and simulation engineering alumni will have:

- Established themselves as practicing professionals in modeling and simulation engineering or related areas or have engaged in graduate study;
- Demonstrated their ability to work successfully as members of a professional team and to function effectively as responsible professionals; and,
- Demonstrated their ability to adapt to changing situations, evolving technologies, and new career challenges.

Student Outcomes

The modeling and simulation engineering program utilizes an educational process to produce a set of outcomes that foster attainment of the program objectives and an assessment process that measures the degree to which the objectives and outcomes are achieved. The results of this assessment inform the continuous improvement of the program.

The modeling and simulation engineering program outcomes are as follows.

Modeling and simulation engineering students who qualify for graduation have the following general education characteristics:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline.

3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

4. An ability to communicate effectively with a range of audiences.

5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

6. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge.

7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment.

In addition, students have the following characteristics specific to the modeling and simulation engineering discipline, which expand on the above engineering program outcomes:

8. An ability to model a variety of systems from different domains;

9. An ability to select and apply appropriate simulation techniques and tools; and

10. An ability to apply visualization techniques to support the simulation process.

Accreditation

The Bachelor of Science in Modeling and Simulation Engineering is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).
Modeling and Simulation Engineering Curriculum*

<table>
<thead>
<tr>
<th>Hours</th>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Freshman

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>MATH 212</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C (grade of C or better required)</td>
<td>3</td>
<td>CHEM 123N**</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121N**</td>
<td>3</td>
<td>CS 150</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122N**</td>
<td>1</td>
<td>PHYS 231N</td>
<td>4</td>
</tr>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>MSIM 111</td>
<td>2</td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIM 201</td>
<td>3</td>
<td>MSIM 205</td>
<td>3</td>
</tr>
<tr>
<td>STAT 330</td>
<td>3</td>
<td>MSIM 281</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 232N</td>
<td>4</td>
<td>MATH 307</td>
<td>3</td>
</tr>
<tr>
<td>CS 250</td>
<td>4</td>
<td>ENGL 231C (grade of C or better required)</td>
<td>3</td>
</tr>
<tr>
<td>CS 252</td>
<td>1</td>
<td>Human Creativity</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 330</td>
<td>3</td>
<td>MSIM 331</td>
<td>3</td>
</tr>
<tr>
<td>CS 381</td>
<td>3</td>
<td>MSIM 383</td>
<td>1</td>
</tr>
<tr>
<td>MSIM 320</td>
<td>3</td>
<td>MSIM 410</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 382</td>
<td>1</td>
<td>MSIM 451</td>
<td>3</td>
</tr>
<tr>
<td>Human Behavior</td>
<td>3</td>
<td>Interpreting the Past</td>
<td>3</td>
</tr>
<tr>
<td>Approved Program elective</td>
<td>3</td>
<td>Upper-Division General Education course/Option D Course I</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIM 441</td>
<td>3</td>
<td>ENMA 480***</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 487W (grade of C or better required)</td>
<td>4</td>
<td>MSIM 488</td>
<td>3</td>
</tr>
<tr>
<td>Upper-Division General Education course/Option D Course II</td>
<td>3</td>
<td>Approved MSIM Technical Elective II</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 401</td>
<td>3</td>
<td>Approved Program elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Program Continuance Regulations

1. After six or more credits in the major have been attempted, if the major grade point average falls below 2.00 the student is placed on departmental academic probation.
2. A student who is on academic probation is subject to termination from the program under the following conditions:
 a. if fewer than 35 credits in the major have been attempted and a deficiency of more than nine grade points below that required to maintain a 2.00 cumulative grade point average in the major exists;
 b. if 35 or more credits in the major have been attempted and a deficiency of more than six grade points below that required to maintain a 2.00 cumulative grade point average in the major exists.

The General Education requirements in information literacy and research and philosophy and ethics are met through the major.

Minor in Modeling and Simulation

An undergraduate minor in modeling and simulation may be obtained by successful completion of 12 or more credit hours of approved modeling and simulation engineering coursework at the 200-, 300-, and 400- level. In addition, a student seeking a minor in modeling and simulation must satisfy all pre- or corequisite requirements for the courses selected.

There are two tracks available in the minor in modeling and simulation: simulation application and simulation development. The chief departmental advisor for the Department of Modeling, Simulation and Visualization Engineering must approve the precise course of study in the minor.

The basic course requirements for the two tracks are as follows:

Simulation Application Track

| STAT 330 | An Introduction to Probability and Statistics | 3 |
| Modeling, Simulation and Visualization Engineering | 2 |
MSIM 205 Discrete Event Simulation 3
MSIM 320 Continuous Simulation 3
and three hours selected from either 3
MSIM 410 Model Engineering 3
MSIM 451 Analysis for Modeling and Simulation 3

Total Hours 12

Simulation Development Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 330</td>
<td>An Introduction to Probability and Statistics (or equivalent)</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 205</td>
<td>Discrete Event Simulation</td>
<td>3</td>
</tr>
<tr>
<td>MSIM 331</td>
<td>Simulation Software Design</td>
<td>3</td>
</tr>
<tr>
<td>and three hours selected from either</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSIM 406</td>
<td>Introduction to Distributed Simulation</td>
<td></td>
</tr>
<tr>
<td>MSIM 408</td>
<td>Introduction to Game Development</td>
<td></td>
</tr>
<tr>
<td>MSIM 441</td>
<td>Computer Graphics and Visualization</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 12

When appropriate, other course work can be developed in consultation with the chief departmental advisor.

For completion of the minor, a student must pass each course required for the minor, achieve a cumulative grade point average of 2.00 for all courses required for the minor exclusive of lower-level courses, prerequisites and corequisites, complete a minimum of twelve credit hours of approved coursework for the minor, and complete at least six hours of upper-level courses in the minor requirement through courses offered by Old Dominion University. To enter the program, students must have completed calculus and one college-level computer-programming course (CS 150 or equivalent). For further information contact the Department of Modeling, Simulation, and Visualization Engineering (p. 1).

MODELING AND SIMULATION Courses

MSIM 111. Information Literacy and Research for Modeling and Simulation Engineers. 2 Credits.
An introduction to methods and standards for locating and using information in the discipline of modeling and simulation engineering. Topics include: assessing information requirements; searching for, locating and evaluating information sources related to modeling and simulation; tools for managing, sharing, and presenting information; and ethical issues in the use of information. Students will complete exercises and research on topics involving interest to modeling and simulation engineers. Prerequisites: ENGN 110.

MSIM 201. Introduction to Modeling and Simulation Engineering. 3 Credits.
This is the first course for Modeling and Simulation Engineering (M&SE) students. M&SE discipline is surveyed at an overview level of detail. Topics include basic definitions, M&S paradigms and methodologies, applications, design processes, and human factors. Information literacy and research methods are addressed. Papers and oral presentations are required and allow the student to investigate different aspects of the discipline. The course provides a general conceptual framework for further M&SE studies. Pre- or corequisite: CS 150 and MATH 163.

MSIM 205. Discrete Event Simulation. 3 Credits.
An introduction to the modeling and simulation of discrete-state, event-driven systems. Topics include: basic properties and terminology for discrete event systems (DES); models for DES including queuing models, Petri nets, and state automata; and methodologies for simulating DES models. Investigation of the steps of a DES simulation study including problem formulation, conceptual model design, simulation model development, input data modeling, output data analysis, verification and validation, and design of simulation experiments. Corequisite: MSIM 281. Prerequisites: MSIM 201. Pre- or corequisite: STAT 330.

MSIM 281. Discrete Event Simulation Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development and application of discrete event simulation. Topics include an introduction to one or more discrete event simulation tools, common modeling constructs, data gathering and input data modeling, design of simulation experiments, output data analysis, and verification and validation. The design and implementation of a series of increasingly complex simulations of various discrete event systems are conducted. The laboratory is designed to accompany MSIM 205. Student written reports are required.

MSIM 320. Continuous Simulation. 3 Credits.
An introduction to the fundamentals of modeling and simulating continuous-state, time-driven systems. Topics include differential equation representation of systems, formulation of state variable equations, and numerical integration techniques including Taylor series, families of Runge-Kutta and Adams methods. Application domains considered include physical, biological, electrical systems, and real-time simulations. Corequisite: MSIM 382. Prerequisite: MSIM 201. Pre- or corequisite: MATH 307 (or MATH 280) and PHYS 227N or PHYS 232N.

MSIM 331. Simulation Software Design. 3 Credits.
Introduction to data structures, algorithms, programming methodologies, and software architectures in support of computer simulation. Topics include lists, queues, sets, trees, searching, sorting, reusable code, and order of complexity. Simulation structures developed include event lists, time management, and queuing models. Software models are implemented and tested. Corequisite: MSIM 383. Prerequisites: MSIM 205, CS 330 and CS 381.

MSIM 367. Cooperative Education. 1-3 Credits.
Student participation for credit based on the academic relevance of work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work is to take place. Prerequisites: approval by department and Career Development Services.

MSIM 368. Internship. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by department and Career Development Services.

MSIM 369. Practicum. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by the department and Career Development Services.

MSIM 382. Continuous Simulation Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development and application of continuous simulation. Topics include an introduction to one or more continuous simulation tools, modeling of various physics-based systems, and numerical solution of differential equations. The design and implementation of a series of increasingly complex simulations of various continuous systems are conducted. The laboratory is designed to accompany MSIM 320. Student written reports are required.

MSIM 383. Simulation Software Design Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development of simulation software. Topics include data structures, algorithms, and simulation executives. The students will conclude with the development of a basic simulation executive capable of managing discrete event simulations. The laboratory is designed to accompany MSIM 331. Student written reports are required.

MSIM 395. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.
MSIM 396. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 406/506. Introduction to Distributed Simulation. 3 Credits.
An introduction to distributed simulation. Topics include motivation for using distributed simulation, distributed simulation architectures, time management issues, and distributed simulation approaches. Current standards for distributed simulation are presented. Prerequisites: MSIM 331.

MSIM 408/508. Introduction to Game Development. 3 Credits.
An introductory course focused on game development theory and modern practices with emphasis on educational game development. Topics include game architecture, computer graphics theory, user interaction, audio, high level shading language, animation, physics, and artificial intelligence. The developed games can run on a variety of computer, mobile, and gaming platforms. Prerequisites: CS 361 or MSIM 331.

MSIM 410/510. Model Engineering. 3 Credits.
The goal of this course is to develop understanding of the various modeling paradigms appropriate for capturing system behavior and conducting digital computer simulation of many types of systems. The techniques and concepts discussed typically include UML, concept graphs, Bayesian nets, Markov models, Petri nets, system dynamics, Bond graphs, etc. Students will report on a particular technique and team to implement a chosen system model. (cross-listed with ECE 410) Prerequisites: MSIM 205. Pre- or corequisite: MSIM 320.

MSIM 411/511. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are used to ensure that networks are able to defend themselves and the end-systems that use networks for data and information communication. Course will also discuss industry-standard network security protocols at application, socket, transport, network, VPN, and link layers, popular network security tools, security, performance modeling and quantification and network penetration testing. Discussion will be based on development of system level models and simulations of networked systems. Cross-listed with ECE 411. Prerequisites: CS 150 and junior standing or permission of the instructor.

MSIM 416/S16. Cyber Defense Fundamentals. 3 Credits.
The objective of this course is to give an introduction of cyber hacking techniques, and defense mechanisms to detect and thwart cybercrime. Cyber attacks aim at compromising cyber systems to disclose information, alter data or operation, cause denial of service, etc. The course first reviews the attacks to wireless networks, such as WiFi and MANET, and the defense strategies and technologies developing system level models. Next, it reviews the attacks to general wired networks and information systems, and introduces the corresponding defense mechanisms. Last it discusses cyber defense security policies and architectures. Cross-listed with ECE 416. Prerequisites: ECE 355 or MSIM 470.

MSIM 417/S17. Secure and Trusted Operating Systems. 3 Credits.
Course will review typical operating systems developing system models and identifying potential vulnerabilities. Course will discuss policies and their implementation required to fix such vulnerabilities to arrive at a secure and Trusted Computing Base. Course examines the security architecture Security Enhanced Linux (SELinux) Windows and Android OS. Cross-listed with ECE 417. Prerequisites: MSIM 470.

MSIM 419/S19. Cyber Physical Systems Security. 3 Credits.
Cyber Physical Systems (CPSs) integrate computing, networking, and physical processes. CPSs are known for their ability to monitor the physical environment; use the monitored data in detecting the state of the physical environment; control the physical environment; and use cyber communications to perform its monitoring, detection, and control operations. One of the biggest challenges to these systems is the security of its cyber space. This course will cover topics in CPS applications, design issues, and security based on development of a system level model. Cross-listed with ECE 419. Prerequisites: CS 150.

MSIM 441/541. Computer Graphics and Visualization. 3 Credits.
The course provides a practical treatment of computer graphics and visualization with emphasis on modeling and simulation applications. It covers computer graphics fundamentals, visualization principles, and software architecture for visualization in modeling and simulation. Prerequisites: CS 250.

MSIM 451/551. Analysis for Modeling and Simulation. 3 Credits.
An introduction to analysis techniques appropriate to the conduct of modeling and simulation studies. Topics include input modeling, random number generation, output analysis, variance reduction techniques, and experimental design. In addition, techniques for verification & validation are introduced. Course concepts are applied to real systems and data. Prerequisites: MSIM 205 and STAT 330.

MSIM 462/562. Introduction to Medical Image Analysis. 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. Cross-listed with ECE 462/ECE 562.

MSIM 463/563. Design and Modeling of Autonomous Robotic Systems. 3 Credits.
Course focuses on autonomous robotics systems with emphasis on using modeling and simulation (M&S) for system level design and testing. Fundamental concepts associated with autonomous robotic systems are discussed. Course topics include: robotic control, architectures, and sensors as well as more advanced concepts such as error propagation, localization, mapping and autonomy. Design strategies that leverage M&S to accelerate the development and testing of sophisticated autonomous robotic algorithms for individual or teams of robots are covered. Pre- or corequisites: CS 150.

MSIM 470/570. Foundations of Cyber Security. 3 Credits.
Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attacks and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. Pre- or corequisites: MSIM 410 or permission of the instructor.

MSIM 474/574. Transportation Data Analytics. 3 Credits.
This course presents the basic techniques for transportation data analytics. It will discuss statistical modeling, prominent algorithms, and visualization approaches to analyze both small- and large-scale data sets generated from transportation systems. Practices of using different data for various real-world traffic/transportation applications and decision making will also be discussed. Prerequisites: Basic probability and statistics (e.g., STAT 330); any programming language such as C, Python or Java is beneficial but not required.

MSIM 480/580. Introduction to Artificial Intelligence. 3 Credits.
Introduction to concepts, principles, challenges, and research in major areas of artificial intelligence. Areas of discussion include: natural language and vision processing, machine learning, machine logic and reasoning, robotics, expert and mundane systems. Laboratory work required. Prerequisite: Instructor approval.

MSIM 487W. Capstone Design I. 4 Credits.
Part one of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literary skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. This is a writing intensive course. Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; MSIM 410, MSIM 331, and MSIM 451.
MSIM 488. Capstone Design II. 3 Credits.
Part two of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. Prerequisites: MSIM 441 and MSIM 487W.

MSIM 495/595. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 496/596. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 497/597. Independent Study in Modeling and Simulation Engineering. 3 Credits.
Individual analytical, computational, and/or experimental study in an area selected by the student. Supervised and approved by the advisor.