Electrical and Computer Engineering

Web Site: http://www.odu.edu/ece

Oscar Gonzalez, Interim Chair

The Department of Electrical and Computer Engineering offers undergraduate four-year degree programs leading to the Bachelor of Science in Electrical Engineering and the Bachelor of Science in Computer Engineering. These programs are accredited by the Engineering Accreditation Commission (EAC) of ABET, http://www.abet.org. The undergraduate programs provide a broad foundation in electrical and/or computer engineering through combined lecture and laboratory work and prepare the student for entering the profession of electrical and/or computer engineering. In addition, these programs prepare the students for further study at the graduate level.

The department also offers programs of graduate study leading to the degrees of Master of Engineering, Master of Science, Doctor of Engineering, and Doctor of Philosophy. Faculty members in electrical and computer engineering are actively engaged in research, and the department maintains extensive laboratory facilities to support the research work. Areas of specialization include biomedical engineering, bioelectronics, plasmas, microelectronics/nanotechnology, photovoltaics, atomic layer deposition, laser processing, multivariable systems/nonlinear control, computational intelligence and machine vision, signal and image processing, modeling/simulation/visualization, medical modeling, computer hardware, computer networks, and communications.

Students majoring in either electrical engineering or computer engineering may fulfill the upper-level General Education requirements through completion of a minor in the other discipline. Computer engineering students automatically meet this requirement with the built-in minor in computer science.

Mission Statement

The Department of Electrical and Computer Engineering at Old Dominion University is a partnership among students, faculty and staff in Service to the profession of Electrical and computer engineering through academic excellence, Research and real-world experiences, dedicated to a Vision of the future that includes Industry and community, Continuous improvement, and personal Enrichment and growth (SERVICE).

Bachelor of Science in Electrical Engineering

Vishnu K. Lakdawala, Chief Departmental Advisor

The electrical engineering undergraduate curriculum begins with a solid foundation in math, science, English, circuits, signals and linear systems, electronics, electromagnetics, digital systems, and microelectronics. Adequate elective freedom is available to the senior student to allow specialization in emphasis areas such as systems and automation engineering, physical electronics, power and renewable energy. Emphasis is placed on understanding principles through theoretical investigation and experimental verification. In addition, course work in General Education Skills and Ways of Knowing are required to assures a well-rounded program of study.

Electrical Engineering Program

Educational Objectives

The electrical engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. demonstrated their ability to adapt to new technology and career challenges

Student Outcomes

The electrical engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, economic, and other factors as appropriate to the discipline.
3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
4. An ability to communicate effectively with a range of audiences.
5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
6. An ability to recognize the ongoing need for additional knowledge, to choose appropriate learning strategies, and to apply this knowledge.
7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment.

Accreditation

The Bachelor of Science in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET www.abet.org, (http://www.abet.org)

Electrical Engineering Curriculum*

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>1</td>
<td>MATH 212</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>CS 150</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 110C (grade of C or better required)</td>
<td>3</td>
<td>PHYS 231N</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 307 (280)</td>
<td>3</td>
<td>ECE 202</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 201</td>
<td>3</td>
<td>ECE 287</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ECE 241</td>
<td>4</td>
<td>Non-major Engineering Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 232N</td>
<td>4</td>
<td>MATH 312 (285)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Interpreting the Past Way of Knowing</td>
<td>3</td>
<td>ENGL 231C</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

17

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 302</td>
<td>3</td>
<td>ECE 304</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
The computer engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study
2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges.

Student Outcomes
The computer engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline.
3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
4. An ability to communicate effectively with a range of audiences.
5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
6. An ability to recognize the ongoing need for additional knowledge, to choose appropriate learning strategies, and to apply this knowledge.
7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment.

Accreditation
The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET www.abet.org. (http://www.abet.org)

Computer Engineering Curriculum*

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>1</td>
<td>MATH 212</td>
<td>4</td>
</tr>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>CS 150</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C (grade of C or better required)</td>
<td>3</td>
<td>PHYS 231N</td>
<td>4</td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours: 127</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Does not include the University’s General Education language and culture requirement. Additional hours may be required.

** Meets philosophy and ethics general education requirement.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major.

Electrical engineering majors must earn a grade of C or better in all 200-level ECE courses prior to taking the next course in the sequence.

Bachelor of Science in Computer Engineering
Vishnu K. Lakdawala, Chief Departmental Advisor

The computer engineering undergraduate degree program is designed to provide both a broad engineering background and a comprehensive foundation in the technical principles underlying the computer area. Students develop a background through course work in mathematics, the basic sciences, and general engineering. The technical core consists of course work from electrical engineering to address hardware aspects of computer engineering and course work from computer science to address software aspects. Adequate elective freedom is available to senior students to allow specialization in emphasis areas such as computer hardware systems, computer networks, cyber security, and signal processing and computer vision. In addition, course work in General Education Skills and Ways of Knowing is required to assure a well-rounded program of study.

Computer Engineering Program Educational Objectives
The computer engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study

2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges.

Student Outcomes
The computer engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline.
3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
4. An ability to communicate effectively with a range of audiences.
5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
6. An ability to recognize the ongoing need for additional knowledge, to choose appropriate learning strategies, and to apply this knowledge.
7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment.

Accreditation
The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET www.abet.org. (http://www.abet.org)

Computer Engineering Curriculum*

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 110</td>
<td>2</td>
<td>ECE 111</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 121N</td>
<td>3</td>
<td>CHEM 123N</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>1</td>
<td>MATH 212</td>
<td>4</td>
</tr>
<tr>
<td>MATH 211</td>
<td>4</td>
<td>CS 150</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110C (grade of C or better required)</td>
<td>3</td>
<td>PHYS 231N</td>
<td>4</td>
</tr>
<tr>
<td>COMM 101R</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours: 127</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Does not include the University’s General Education language and culture requirement. Additional hours may be required.

** Meets philosophy and ethics general education requirement.

The General Education requirements in information literacy and research, impact of technology, and philosophy and ethics are met through the major.

Electrical engineering majors must earn a grade of C or better in all 200-level ECE courses prior to taking the next course in the sequence.

Bachelor of Science in Computer Engineering
Vishnu K. Lakdawala, Chief Departmental Advisor

The computer engineering undergraduate degree program is designed to provide both a broad engineering background and a comprehensive foundation in the technical principles underlying the computer area. Students develop a background through course work in mathematics, the basic sciences, and general engineering. The technical core consists of course work from electrical engineering to address hardware aspects of computer engineering and course work from computer science to address software aspects. Adequate elective freedom is available to senior students to allow specialization in emphasis areas such as computer hardware systems, computer networks, cyber security, and signal processing and computer vision. In addition, course work in General Education Skills and Ways of Knowing is required to assure a well-rounded program of study.

Computer Engineering Program Educational Objectives
The computer engineering program seeks to prepare graduates who, after the first few years of their professional career, have:

1. established themselves as practicing engineering professionals in industry or government, or engaged in graduate study

2. demonstrated their ability to work successfully as members of a professional team and function effectively as responsible professionals
3. demonstrated their ability to adapt to new technology and career challenges.

Student Outcomes
The computer engineering student outcomes are as follows. Graduates must attain:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline.
3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
4. An ability to communicate effectively with a range of audiences.
5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
6. An ability to recognize the ongoing need for additional knowledge, to choose appropriate learning strategies, and to apply this knowledge.
7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment.

Accreditation
The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET www.abet.org. (http://www.abet.org)
Academic achievement. At the end of each semester, including summer
that he or she is either unable or unwilling to maintain reasonable standards
deny a student eligibility to enroll in ECE courses after it becomes evident
It is the policy of the Department of Electrical and Computer Engineering to
Continuance Regulations
level ECE courses prior to taking the next course in the sequence.
Computer engineering majors must earn a grade of C or better in all 200-
minor in computer science.
impact of technology, and philosophy and ethics are met through the major.
A student will be placed on departmental academic probation whenever
A deficiency of more than six grade points below that required
A deficiency of more than nine grade points below that required
A student is subject to termination from the departmental engineering
1. A student will be placed on departmental academic probation whenever
his or her major grade point average falls below 2.00 (after six or more
hours have been attempted in the major.)
2. A student is subject to termination from the departmental engineering
program if his or her record shows one of the following:
 a. A deficiency of more than nine grade points below that required
to maintain a 2.00 cumulative average in the major. This rule
 applies to students who have attempted fewer than 35 hours of their
departmental engineering courses, including transfer hours.
 b. A deficiency of more than six grade points below that required
 to maintain a 2.00 cumulative average in the major. This rule
 applies to students who have attempted 35 hours or more of their
departmental engineering courses, including transfer hours.
 c. A deficiency of more than six grade points below required
 to maintain a 2.00 cumulative average in the major. This rule
 applies to students who have attempted fewer than 35 hours of their
departmental engineering courses, including transfer hours.
 d. A deficiency of more than six grade points below required
 to maintain a 2.00 cumulative average in the major. This rule
 applies to students who have attempted 35 hours or more of their
departmental engineering courses, including transfer hours.

Appeals of termination from the engineering program are in order if
extenuating circumstances warrant. Appeals are to be made in writing to the
chair of the department. Once the appeal is submitted, it is considered by the
faculty of the department.

ELECTRICAL AND COMPUTER
ENGINEERING COURSES
ECE 111. Information Literacy and Research for Electrical and
Computer Engineering. 2 Credits.
An introductory course for ECE students that explores information literacy
in terms of information basics, information need, searching, locating, and
evaluating information sources, citing and ethics of information in relation
to development and implementation of electrical and computer engineering
projects. Prerequisites: ENGN 110 and MATH 162M.
ECE 201. Circuit Analysis I. 3 Credits.
An introduction to the analysis and theory of linear electrical circuits,
including relevant mathematical background. Topics include: passive
component definitions and connection rules; independent and dependent
sources, concepts of power & energy; Kirchhoff’s laws; development of
network reduction techniques; formulation of mesh-current and node-
voltage equations; network theorems including Thévenin, Norton, Maximum
power transfer, and superposition Theorem, Operational Amplifiers,
Two Port Networks (resistive), Energy Storage Elements, and initial
conditions. Basics of matrices and linear algebra with Gaussian elimination;
matrix applications to linear circuit analyses; MATLAB & PSPICE with
analyses and applications to passive circuits. (offered fall, spring, summer)
Prerequisites: a grade of C or better in MATH 212. Pre- or corequisite:
PHYS 232N.
ECE 202. Circuit Analysis II. 3 Credits.
Time domain analysis of first-order and second-order electrical circuits;
Sinusoidal steady state analysis; Phasor representation of AC Circuits,
Maximum power transfer and Thévenin-Norton theorems for AC circuits;
Frequency response of circuits (with R, L, and C components), Laplace
Transforms and transfer functions of linear circuits; extension to frequency
domain circuit analysis including Bode plots; operational amplifiers with
relevant circuit examples; two-port networks including Z- and Y-parameters;
transformer concepts. PSPICE and MATLAB for DC and transient circuit
analyses; theory & solution of linear ordinary differential equations with
constant coefficients, complex numbers, Euler’s formula and complex
arithmetic; PSPICE and MATLAB implementation of AC response and
analyses. (offered fall, spring, summer) Prerequisites: MATH 280 or
MATH 307 and a grade of C or better in ECE 201.
ECE 241. Fundamentals of Computer Engineering. 4 Credits.
This course develops the foundation of computer engineering for computer
engineers as well as an introductory breadth appropriate for electrical
engineers. Class topics include computer information, digital design
(combination and sequential circuits), computer organization, and
assembly language. The laboratory includes building digital circuits
(focusing on programmable logic), assembly language programming, and
system interfacing. The use of a hardware description language is employed
in class and the laboratory to specify, simulate and synthesize digital circuits.
Prerequisites: CS 150 and MATH 211 with a grade of C or above for both.
ECE 287. Fundamental Electric Circuit Laboratory. 2 Credits.
Objective of course is to provide students in electrical and computer
engineering with a 'hands-on' introduction to selected topics in electrical
engineering. Students will use basic circuit analysis skills and C
programming skills to design, build, and test electrical networks interfacing
to a micro-controller. Labs will also provide an introduction to basic
measurement techniques and electrical laboratory equipment (power
supplies, oscilloscopes, voltmeters, etc). Prerequisites: A grade of C or better
in both CS 150 and ECE 201. Pre- or corequisite: ECE 202.
ECE 300. Math Review for Graduate Engineering Analysis. 3 Credits. Complex algebra, linear algebra and matrix methods, aspects of multivariable calculus, Boolean logic and numbering systems, differential equations, Laplace transforms, and aspects of probability. Applications and examples in the field of electrical engineering will be used. The use of Matlab in engineering problem solving will be presented. Course not available to ECE undergraduate majors. Prerequisites: Departmental approval.

ECE 301. Review of Electrical Engineering Analysis. 3 Credits. Electrical engineering problems, including time-domain and frequency-domain circuit analysis, analysis of networks with electronic components. The use of Matlab and Simulink in electrical engineering problem solving will be presented. Course not available to ECE undergraduate majors. Prerequisites: Departmental approval.

ECE 302. Linear System Analysis. 3 Credits. This course covers the fundamental concepts of signal and linear system representation and analysis in continuous time. Topics include: Operations with sinusoids and complex exponentials. Signal properties, operations, and models. System properties, classification, and models. Time-domain system analysis, including impulse response, total system response, stability, and convolution. Fourier analysis of continuous-time signals and signal transmission through linear time-invariant systems. Ideal and practical filters. Advanced matrix operations and linear algebra with applications to signal and system analysis. Characteristic equation of a matrix, eigenvalues and eigenvectors. Performing time and frequency domain analysis using MATLAB. (offered fall, spring). Prerequisites: MATH 280 or MATH 307 and a grade of C or better in ECE 202.

ECE 303. Introduction to Electrical Power. 3 Credits. AC steady state power, single-phase and three-phase networks, electric power generation, transformers, transmission lines, electric machinery and the use of power. Energy resources, power plants, renewable energy, electric safety. (offered fall, summer) Prerequisites: a grade of C or better in ECE 201.

ECE 304. Probability, Statistics, and Reliability. 3 Credits. Introduction to probability, probability models, discrete and continuous random variables, statistics, reliability. Continuous Random Variables introduce the important Normal or Gaussian Distribution: Cumulative Normal Distributions # (z) etc. This course teaches the basic principles of collecting & analyzing engineering data, the advantages of designed engineering experiments (DE), (Completely Randomized Single Factor Experiments), statistical hypothesis testing, Analysis of Variance (ANOVA) and examines the variability in time-oriented data for statistical quality control and statistical process control (SPC). Introduction to Control Charts covers engineering control limits, process limits, tolerance limits for 'X, R & S Control Charts, Process Capability Indexes Cp & Cpk, 6-Sigma Processes. Probability models help quantify the risks involved in statistical inference - the risks involved in engineering decisions made every day. Numerous examples from all engineering disciplines serve to illustrate the concepts. Prerequisites: a grade of C or better in MATH 212.

ECE 313. Electronic Circuits. 4 Credits. Introduction to junction diodes, bipolar junction transistors (BJTs), MOS field-effect transistors (MOSFETs) and operational amplifiers (op-amps). Design concepts for discrete analog circuits with diodes, BJTs, MOSFETs and op-amps. The lab component introduces design and techniques for implementation of analog circuits. Prerequisites: a grade of C or better in ECE 202. Pre- or corequisite: ECE 241.

ECE 323. Electromagnetics. 3 Credits. This course provides an introduction to the basic concepts of electromagnetics. Topics include math fundamentals for electromagnetic studies, Maxwell’s equations, electromagnetic waves, polarization, wave propagation in various media and across interfaces, waveguides and transmission lines. This fundamental course is to build an electrical engineering/physics foundation for students and enable them to identify, formulate, and solve future engineering problems. Prerequisites: MATH 285 or MATH 312 and a grade of C or better in ECE 202.

ECE 332. Microelectronic Materials and Processes. 3 Credits. An introduction to fundamental properties of semiconductors and device fabrication processes. The topics include crystal structure, bonding, energy bands, doping, carrier densities, mobility, resistivity, recombination, drift, and diffusion. Basic structure of p-n junctions, BJTs and MOSFETs and their fabrication processes, including solid state diffusion, thermal oxidation of silicon, ion implantation, chemical vapor deposition, thin film deposition, photolithography and etching are reviewed. (offered fall and spring) Prerequisites: a grade of C or better in ECE 202.

ECE 341. Digital System Design. 3 Credits. Tools and methodologies for top-down design of complex digital systems. Important topics include minimization, mixed logic, algorithmic state machines, microprogrammed controllers, creating and using a gold model, data and control path design and data movement and routing via buses. Design methodologies covered include managing the design process from concept to implementation, verification using a gold model, and introduction to design flow. A hardware description language is used extensively to demonstrate models and methodologies, and is also used in design exercises and projects. (offered fall, spring) Prerequisites: a grade of C or better in ECE 241.

ECE 346. Microcontrollers. 3 Credits. A hands-on approach to microprocessor and peripheral system programming, I/O interfacing, and interrupt management. A sequence of projects requiring the programming and integration of a microcontroller-based system is conducted. Project assignments require a microcontroller evaluation board and accessories supplied by the student. (offered spring) Prerequisites: a grade of C or better in ECE 241.

ECE 355. Introduction to Networks and Data Communications. 3 Credits. This course introduces the basic concepts of computer networks and data communications. Topics include protocol layers, the application layer, the transport layer, the network layer, the data link layer, and the physical layer. Students will learn how to use network packet analyzer tools to do simple network analysis. Emphasis is on gaining an understanding of network engineering as it relates to hardware configuration, system operation and maintenance. (offered fall) Prerequisites: ECE 304 and a grade of C or better in ECE 241.

ECE 367. Cooperative Education. 1-3 Credits. Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work experience is to take place. (offered fall, spring, summer) (qualifies as a CAP experience) Prerequisites: approval by the department and Career Development Services in accordance with the policy for granting credit for Cooperative Education programs.

ECE 368. Student Internship. 1-3 Credits. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. (qualifies as a CAP experience) Prerequisites: Approval by department and Career Development Services.

ECE 369. Practicum. 1-3 Credits. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students an opportunity to gain short duration career related experience. (qualifies as a CAP experience) Prerequisites: approval by department and Career Development Services.

ECE 381. Introduction to Discrete-time Signal Processing. 3 Credits. This course covers fundamental digital signal processing techniques that form the basis for a wide variety of application areas. Topics include discrete-time signals and systems, time domain analysis, solutions of difference equations, Z-transform analysis, discrete Fourier transforms (DFT), sampling theorem, transform analysis of linear time-invariant systems, structure of discrete-time systems and introduction to power spectrum estimation. (offered fall and spring) Prerequisites: ECE 302 and a grade of C or better in ECE 241.
ECE 387. Microelectronics Fabrication Laboratory. 3 Credits.
The laboratory course will enable students to fabricate MOSFETs, MOS capacitors, diffused resistors and p-n diodes. Students will be trained to operate the equipment required for wet and dry oxidation, thin film deposition, solid state diffusion, photolithography, and etching. Students will fabricate and analyze the devices by current-voltage characteristic, capacitance-voltage characteristic, film thickness and conductivity measurements. (offered fall and spring). Prerequisites: ECE 332.

ECE 395. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 396. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 403/503. Power Electronics. 3 Credits.
Power electronics provides the needed interface between an electrical source and an electrical load and facilitates the transfer of power from a source to a load by converting voltages and currents from one form to another. Topics include: alternating voltage rectification, Pulse Width Modulation (PWM), DC converters (Buck, Boost, Buck-Boost, Cuk and SEPIC converters), negative feedback control in power electronics, isolated switching mode power supply, flyback and forward power supply, solid state power switches, AC inverter. (offered spring) Prerequisites: MATH 307 and ECE 303.

ECE 404/504. Electric Drives. 3 Credits.
Electric drives efficiently control the torque, speed and position of electric motors. This course has a multi-disciplinary nature and includes fields such as electric machine theory, power electronics, and control theory. Topics include: switch-mode power electronics, magnetic circuit, DC motor, AC motor, Brushless DC motor, induction motor, speed control of induction motor, vector control of induction motor, stepper-motor. (offered fall) Prerequisites: ECE 201 and ECE 303.

ECE 406/506. Introduction to Visualization. 3 Credits.
The course provides a practical treatment of computer graphics and visualization with emphasis on the usage of industry standard application programming interface (API) libraries for modeling and simulation applications. It introduces computer graphics fundamentals, including mathematical foundations, rendering pipeline, geometrical transformations, 3D viewing and projections, lighting and shading, texture mapping, etc. It teaches OpenGL programming for developing interactive visualization for modeling and simulation applications. Unity game engine is utilized to illustrate advanced concepts and techniques. Interactive visualization software architecture for modeling and simulation and visualization principles based on perception is covered in depth with case studies. (cross listed with MSIM 441) Prerequisites: a grade of C or better in CS 250.

ECE 407/507. Introduction to Game Development. 3 Credits.
An exciting introductory course focused on game development theory and practices using Unity game engine with emphasis on educational game development. Topics covered in this course include game architecture, 3D computer graphics theory, content generation, user interaction, graphical user interface, audio, game physics, animation, physics, C# language scripting, and artificial intelligence. Students will develop games related to science, technology, engineering, and mathematics (STEM) education. The developed games can run on a variety of platforms, including personal computers, smart phones, and game consoles. (cross listed with MSIM 408/ MSIM 508) Prerequisites: CS 361 or equivalent.

ECE 410/510. Model Engineering. 3 Credits.
The goal of this course is to develop understanding of the various modeling paradigms appropriate for capturing system behavior and conducting digital computer simulation of many types of systems. The techniques and concepts discussed typically include UML, concept graphs, Bayesian nets, Markov models, Petri nets, system dynamics, Bond graphs, etc. Students will report on a particular technique and team to implement a chosen system model. (cross-listed with MSIM 410) Prerequisites: MSIM 205 or equivalent. Pre- or corequisite: MSIM 320 or equivalent.

ECE 411/511. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are used to ensure that networks are able to defend themselves and the end-systems that use networks for data and information communication. Course will also discuss industry-standard network security protocols at application, socket, transport, network, VPN, and link layers, popular network security tools, security, performance modeling and quantification and network penetration testing. Discussion will be based on development of system level models and simulations of networked systems. (Crosslisted with MSIM 411 and ENMA 411) Prerequisites: CS 150 and junior standing or permission of the instructor.

ECE 416/516. Cyber Defense Fundamentals. 3 Credits.
The objective of this course is to give an introduction of cyber hacking techniques and defense mechanisms to detect and thwart cybercrime. Cyber attacks aim at compromising cyber systems to disclose information, alter data or operation, cause denial of service, etc. The course first reviews the attacks to wireless networks, such as WiFi and MANET, and the defense strategies and technologies. Next, it reviews the attacks to general wired networks and information systems, and introduces the corresponding defense mechanisms. Last, it discusses cyber defense security policies and architectures. Cross-listed with ENMA 416/MSIM 416. Prerequisites: ECE 355.

ECE 417/517. Secure and Trusted Operating Systems. 3 Credits.
Course will review typical operating systems developing system models and identifying potential vulnerabilities. Course will discuss policies and their implementation required to fix such vulnerabilities to arrive at a secure and Trusted Computing Base. Course examines the security architecture Security Enhanced Linux (SELinux) Windows and Android OS. (Crosslisted with MSIM 417 and ENMA 417) Prerequisites: MSIM 470.

ECE 419/519. Cyber Physical System Security. 3 Credits.
Cyber Physical Systems (CPSs) integrate computing, networking, and physical processes. CPSs are known for their ability to: a) monitor the physical environment; b) use the monitored data in detecting the state of the physical environment; c) control the physical environment; and d) use cyber communications to perform its monitoring, detection and control operations. One of the biggest challenges to these systems is the security of its cyber space. This course will cover topics in CPS applications, design issues, and security. Cross-listed with ENMA 419/MSIM 419. Prerequisites: ECE 241 and ECE 287.

ECE 441/541. Advanced Digital Design and Field Programmable Gate Arrays. 3 Credits.
Course will provide a description of FPGA technologies and the methods using CAD design tools for implementation of digital systems using FPGAs. It provides advanced methods of digital circuit design, specification, synthesis, implementation and prototyping. It introduces practical system design examples. (Offered spring) Prerequisites: ECE 341.

ECE 443/543. Computer Architecture. 3 Credits.
An introduction to computer architectures. Analysis and design of computer subsystems including central processing units, memories and input/output subsystems. Important concepts include datapaths, computer arithmetic, instruction cycles, pipelining, virtual and cache memories, direct memory access and controller design. (offered fall) Corequisite: ECE 484W. Prerequisites: ECE 341 and ECE 346.

ECE 451/551. Communication Systems. 3 Credits.
Fundamentals of communication systems engineering. Modulation methods including continuous waveform modulation (amplitude, angle). Design of modulation systems and the performance in the presence of noise. Communication simulation exercises through computer experiments. Prerequisites: ECE 304 and ECE 302.

ECE 452/552. Introduction to Wireless Communication Networks. 3 Credits.
Foundations of Cyber Security, 3 Credits.
Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attack and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. (Cross-listed with ENMA 470 and MSIM 470) Prerequisite: MSIM 410 or permission of the instructor.

Introduction to Solar Cells, 3 Credits.
This course is designed to provide the fundamental physics and characteristics of photovoltaic materials and devices. A focus is placed on i) optical interaction, absorption, and design for photovoltaic materials and systems, ii) subsequent energy conversion processes in inorganic/organic semiconductor such as generation, recombination, and charge transport, and iii) photovoltaic testing and measurement techniques to characterize solar cells including contact and series resistance, open circuit voltage, short circuit current density, fill factor, and energy conversion efficiency of photovoltaic devices. (Offered fall, spring) Prerequisites: ECE 332.

Plasma Processing at the Nanoscale, 3 Credits.
The science and design of partially ionized plasma and plasma processing devices used in applications such as etching and deposition at the nanoscale. Gas phase collisions, transport parameters, DC and RF glow discharges, the plasma sheath, sputtering, etching, and plasma deposition. Prerequisites: ECE 323.

Solid State Electronics, 3 Credits.
The objective of this course is to understand basic semiconductor devices by understanding semiconductor physics (energy bands, carrier statistics, recombination and carrier drift and diffusion) and to gain an advanced understanding of the physics and fundamental operation of advanced semiconductor devices. Following the initial introductory chapters on semiconductor physics, this course will focus on p-n junctions, metal-semiconductor devices, MOS capacitors, MOS field effect transistors (MOSFET) and bipolar junction transistors. Prerequisites: ECE 313, ECE 323 and ECE 332.

Introduction to Solar Cells, 3 Credits.
This course is designed to provide the fundamental physics and characteristics of photovoltaic materials and devices. A focus is placed on i) optical interaction, absorption, and design for photovoltaic materials and systems, ii) subsequent energy conversion processes in inorganic/organic semiconductor such as generation, recombination, and charge transport, and iii) photovoltaic testing and measurement techniques to characterize solar cells including contact and series resistance, open circuit voltage, short circuit current density, fill factor, and energy conversion efficiency of photovoltaic devices. (Offered fall, spring) Prerequisites: ECE 332.

Automatic Control Systems, 3 Credits.

Instrumentation, 3 Credits.
Computer interfacing using a graphical programming language with applications involving digital-to-analog conversion (DAC), analog-to-digital conversion (ADC), digital input output (DIO), serial ports, and the general-purpose instrument bus (GPIOB). Analysis of sampled data involving use of probability density function, mean and standard derivations, correlations, and the power spectrum. (offered spring, summer) Prerequisites: PHYS 102N, PHYS 112N, or PHYS 232N and ECE 302.

Automatic Control Systems, 3 Credits.

Instrumentation, 3 Credits.
Computer interfacing using a graphical programming language with applications involving digital-to-analog conversion (DAC), analog-to-digital conversion (ADC), digital input output (DIO), serial ports, and the general-purpose instrument bus (GPIOB). Analysis of sampled data involving use of probability density function, mean and standard derivations, correlations, and the power spectrum. (offered spring, summer) Prerequisites: PHYS 102N, PHYS 112N, or PHYS 232N and ECE 302.

Biomedical Applications of Low Temperature Plasmas, 3 Credits.
This course is cross listed between ECE and Biology. It is designed to be taken by senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered. Prerequisites: Senior standing.

Foundations of Cyber Security, 3 Credits.
Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attack and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. (Cross-listed with ENMA 470 and MSIM 470) Prerequisite: MSIM 410 or permission of the instructor.

Introduction to Solar Cells, 3 Credits.
This course is designed to provide the fundamental physics and characteristics of photovoltaic materials and devices. A focus is placed on i) optical interaction, absorption, and design for photovoltaic materials and systems, ii) subsequent energy conversion processes in inorganic/organic semiconductor such as generation, recombination, and charge transport, and iii) photovoltaic testing and measurement techniques to characterize solar cells including contact and series resistance, open circuit voltage, short circuit current density, fill factor, and energy conversion efficiency of photovoltaic devices. (Offered fall, spring) Prerequisites: ECE 332.

Plasma Processing at the Nanoscale, 3 Credits.
The science and design of partially ionized plasma and plasma processing devices used in applications such as etching and deposition at the nanoscale. Gas phase collisions, transport parameters, DC and RF glow discharges, the plasma sheath, sputtering, etching, and plasma deposition. Prerequisites: ECE 323.

Solid State Electronics, 3 Credits.
The objective of this course is to understand basic semiconductor devices by understanding semiconductor physics (energy bands, carrier statistics, recombination and carrier drift and diffusion) and to gain an advanced understanding of the physics and fundamental operation of advanced semiconductor devices. Following the initial introductory chapters on semiconductor physics, this course will focus on p-n junctions, metal-semiconductor devices, MOS capacitors, MOS field effect transistors (MOSFET) and bipolar junction transistors. Prerequisites: ECE 313, ECE 323 and ECE 332.

Optical Fiber Communication, 3 Credits.
This course introduces seniors and first year graduates to the physics and design of optical fiber communication systems. The topics covered are: electromagnetic waves; optical sources including laser diodes; optical amplifiers; modulators; optical fibers; attenuation and dispersion in optical fibers; photodetectors; optical receivers; noise considerations in optical receivers; optical communication systems. Prerequisites: ECE 323 and MATH 285 or MATH 312.

Embedded Systems, 3 Credits.
This course covers fundamentals of embedded systems: basic architecture, programming, and design. Topics include processors and hardware for embedded systems, embedded programming and real time operating systems. Prerequisites: ECE 346.

Computer Engineering Design I, 3 Credits.
Emphasis is on the design of a complex digital circuit and microcontroller interfacing. A semester-long project involves the design, simulation and testing of a digital architecture and software GUI. Several moderate scale digital modules are designed, simulated, implemented and tested during the semester. Design methods incorporate CAD design tools, implementation with advanced integrated circuit technology and contemporary software tools. Oral and written communication skills are stressed. This is a writing intensive course. (offered fall and spring) (qualifies as a CAP experience) Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; ECE 341 and ECE 346. Pre- or corequisite: ECE 313.

Electrical Engineering Design I, 3 Credits.
Part one of the senior capstone design experience for electrical engineering majors. Lectures focus on providing professional orientation and exploration of the design process. Small group design projects focus on the development of electronic subsystems. Oral and written communication skills are stressed. (This is a writing intensive course.) (qualifies as a CAP experience) (offered fall, spring) Prerequisites: ECE 313 and a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C. Pre- or corequisite: ECE 303, ECE 304, ECE 323, and ECE 332.

Electrical and Computer Engineering
ECE 486. Preparatory ECE Senior Design II. 2 Credits.
The course is the preparatory, proposal development section of part two of the senior capstone design experience for electrical and computer engineering majors. The course will focus on developing a proposal for a group design project. The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Elements of developing a successful proposal are emphasized along with written communication skills. Industry-sponsored multi-disciplinary design projects are an option. (qualifies as a CAP experience) Pre- or corequisite: ECE 484W or ECE 485W.

ECE 487. ECE Senior Design II. 2 Credits.
Part two of the senior capstone design experience for electrical and computer engineering majors. In this course, students will implement the design proposal developed in ECE 486. The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Oral and written communication skills are emphasized. Industry-sponsored multi-disciplinary design projects are an option. Prerequisites: ECE 486.

ECE 488. ECE Senior Design III. 3 Credits.
Part three of the senior capstone design experience for electrical and computer engineering majors. Individual and group design projects focus on the development of complete electrical and computer systems. Oral and written communication skills are stressed. Industry-sponsored multi-disciplinary design projects are an option. (qualifies as a CAP experience) Prerequisites: ECE 487.

ECE 491. Microelectronics Design Experience. 3 Credits.
This is a Virginia Microelectronics Consortium (VMEC) hands-on, state-of-the-art summer research internship experience. This is not a regular class, but a summer research internship open only to those undergraduate students who apply and win a coveted VMEC Summer Research Scholarship. The VMEC internship provides excellent technical knowledge as well as industrial and academic contacts for career development. Students complete a 10-13 week summer project on a microelectronics research or design activity at an engineering school or in the State-of-the-Art Cleanroom of industry members of the VMEC at Micron Technology, Inc in Manassas, VA or at British Aerospace Engineering (BAE). For eligibility, the student has to apply to the VMEC program and must be selected as a VMEC Student Scholar in a competition held late in the fall semester of each academic year. Each student will be required to give at least two formal oral reports and one formal poster presentation summarizing the research results at the end of the summer session. The project must be completed at an institution other than Old Dominion University. Students will be supervised by faculty or industry mentors at the summer location, but must also have an Old Dominion University co-advisor and instructor of record for the course. Prerequisites: junior standing in electrical or computer engineering.

ECE 495/595. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.

ECE 496/596. Topics in Electrical and Computer Engineering. 1-3 Credits.
Study of topics in electrical and computer engineering. Prerequisites: departmental approval.