Chemistry and Biochemistry

Web Site: http://www.odu.edu/chemistry

John B. Cooper, Chair
Pinky McCoy, Chief Departmental Advisor

The Department of Chemistry and Biochemistry offers a program in biochemistry and an American Chemical Society certified program in chemistry, with an optional secondary education emphasis. Chemistry has been called the "central science" because it makes major contributions to agriculture, biology, electronics, engineering, environmental science, medicine, mineralogy and pharmacology. Either undergraduate degree program gives the student the necessary background for continued academic study at the master's and Ph.D. levels, entry into medical, dental, and pharmacy schools, as well as a career in the chemical industry. Students not only gain an excellent education, but also have many research opportunities available to enrich their understanding of real-world problems. Cooperative arrangements exist with the nearby Eastern Virginia Medical School, NASA Langley Research Center and the Thomas Jefferson National Accelerator Facility.

Bachelor of Science—Chemistry Major

Lower-Division General Education

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Communication *</td>
<td>6</td>
</tr>
<tr>
<td>Oral Communication</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Language and Culture</td>
<td>0-6</td>
</tr>
<tr>
<td>Information Literacy and Research (can be met by CHEM 125)</td>
<td>0-3</td>
</tr>
<tr>
<td>Human Creativity</td>
<td>3</td>
</tr>
<tr>
<td>Interpreting the Past</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>The Nature of Science</td>
<td>8</td>
</tr>
<tr>
<td>Physics I</td>
<td></td>
</tr>
<tr>
<td>University Physics I</td>
<td></td>
</tr>
<tr>
<td>Impact of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Human Behavior</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>38-47</td>
</tr>
</tbody>
</table>

* Grade of C or better required in both courses

In addition to completing the University's lower-division general education requirements and upper-division general education requirements, a chemistry major must complete the following courses.

Required Chemistry Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121N</td>
<td>Foundations of Chemistry I Lecture (cannot earn credit for both 121N and 105N)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>Foundations of Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 123N</td>
<td>Foundations of Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124N or CHEM 125</td>
<td>Foundations of Chemistry II Lab with Introduction to Chemical Research</td>
<td>1-4</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 214 or CHEM 216</td>
<td>Organic Chemistry II Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

CHEM 485 | Chemistry and Biochemistry Seminar | 1 |

Select two CHEM Electives from the following:

- CHEM 415 | Intermediate Organic Chemistry |
- CHEM 439 | Introduction to Pharmaceutical Chemistry |
- CHEM 443 | Intermediate Biochemistry |
- CHEM 449 | Environmental Chemistry |
- CHEM 451 | Advanced Inorganic Chemistry |
- CHEM 453 | Essentials of Toxicology |

Select one CHEM Laboratory from the following: 2-4

- CHEM 352 | Inorganic Chemistry Laboratory |
- CHEM 442W | Biochemistry Laboratory |

Other required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 211</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>66-71</td>
</tr>
</tbody>
</table>

Chemistry majors must have a C or better in all courses required for the major, including prerequisite courses, and must complete a minimum of 12 credits in upper-level (300/400) chemistry courses at Old Dominion University. Written permission by the chief departmental advisor or chair is required prior to taking upper-level chemistry courses at other institutions.

Elective Credit

Elective credit may be needed to meet the minimum requirement of 120 credit hours.

Upper-Division General Education

- **Option A.** Approved Disciplinary Minor (a minimum of 12 hours determined by the department), or second degree or second major.
- **Option B.** Interdisciplinary Minor (specifically 12 hours, 3 of which may be in the major)
- **Option C.** International Business and Regional Courses or an approved Certification Program such as teaching licensure
- **Option D.** Two Upper-Division Courses from outside the College of Sciences and not required by the major (6 hours)

Requirements for Graduation

Requirements for graduation include a minimum cumulative grade point average of 2.00 overall and in the major, a grade of C or better in all courses required for the major, including prerequisite courses, 120 credit hours, which must include both a minimum of 30 credit hours overall and 12 credit hours in upper-level courses in the major program from Old Dominion University, completion of ENGL 110C, ENGL 211C or ENGL 221C or ENGL 231C, and the writing intensive (W) course in the major with a grade of C or better, and completion of Senior Assessment. Additional hours may be required to meet the foreign language requirement.

Bachelor of Science - Chemistry with Research Concentration

Students with an interest in pursuing chemical research after graduation or in graduate school or those seeking a deeper understanding of chemical research and applications may pursue a research concentration in Chemistry. For the research concentration, students must take Senior Thesis I
www.odu.edu/oce and review the Education admission assessment, visit the Office of Clinical Experiences website at https://www.odu.edu/oce. Old Dominion University students seeking admission to an approved teacher education program must have submitted Praxis Core or approved alternative test of mathematics, reading, and writing (SAT or ACT). Virginia Board of Education prescribed assessments and earn the minimum Virginia Communication and Literacy Assessment (VCLA) – a passing score of 153 is required. Praxis Subject Assessment, Chemistry content knowledge (test code: 5245) – passing score of 153 is required. To review more information on the Virginia Board of Education prescribed assessments visit the Office of Clinical Experiences website at https://www.odu.edu/oce.

Continuance
Students must maintain a cumulative GPA of 2.75, a major/content GPA of 2.75 and a professional education GPA of 2.75. Chemistry courses must be passed with a grade of C (2.0) or higher. The remaining courses required for the major and in the professional education core must be completed with a grade of C- or higher for continuance. A professional education GPA of 2.75 is required for continuance. Students must take and pass the Virginia Communication and Literacy Assessment (VCLA) and the Praxis Subject Assessment, Chemistry content knowledge (formerly Praxis II) prior to or while enrolled in the instructional strategies course. All assessments must be passed prior to the start of the Teacher Candidate Internship Orientation session.

Background Clearance Requirement
Old Dominion University requires a background clearance check of candidates interested in many of the professional education programs. Professional education programs have several field experiences that are required for continuance and graduation from the program. The background clearance must be successfully completed prior to a field experience placement. Candidates will be provided a field experience placement when the background check process is completed with resolution of any issues. The process to complete the ODU clearance background check is located at: http://www.odu.edu/success/academic/teacher-education/placement/background-checks. The ODU clearance process includes: an FBI fingerprint, a child protective service/social service review, and a Virginia State Police sex offender registry review. Candidates interested in the professional education programs are advised to complete this clearance process immediately upon entry into the program since the clearance process takes a minimum of eight weeks to complete.

Virginia Board of Education Prescribed Assessments for Licensure
Virginia Communication and Literacy Assessment (VCLA) – a passing composite score of 470 is required on this reading and writing assessment. Praxis Subject Assessment, Chemistry content knowledge (test code: 5245) – passing score of 153 is required. To review more information on the Virginia Board of Education prescribed assessments visit the Office of Clinical Experiences website at https://www.odu.edu/oce.

Graduation
Requirements for graduation include completion of ENGL 110C, ENGL 211C or ENGL 221C or ENGL 231C, and the writing intensive (W) course in the major with a grade of C or better, completion of the Senior Assessment, a minimum cumulative 2.75 GPA, in the major area, and in the professional education core, with no grade less than a C in the major and C- in the professional education core; successful completion of the Teacher Candidate Internship and a minimum of 130 credit hours, which must include both a minimum of 33 credit hours overall and 12 credit hours in upper-level courses in the major program from Old Dominion University. Note that a C (2.0) must be earned in all chemistry courses used to satisfy departmental requirements. Additional hours may be required to meet the foreign language requirement. The professional education core satisfies the Upper-Division General Education requirement. The curriculum is as follows:
Lower-Division General Education

Written Communication * 6
Oral Communication 3
COMM 101R Public Speaking 3
Mathematics 3
MATH 163 Precalculus II (required)
Language and Culture 0-6
Information Literacy and Research (can be met by CHEM 125) 0-3
Human Creativity 3
Interpreting the Past 3
Philosophy and Ethics 3
Literature 3
The Nature of Science 8
PHYS 231N University Physics I
& PHYS 232N University Physics
Impact of Technology 3
Human Behavior 3
Total Hours 38-47

* Grade of C or better required in both courses

In addition to completing the University's lower-division general education requirements and upper-division general education requirements, a chemistry major seeking teacher licensure must complete the following courses.

Required Chemistry courses

CHEM 121N Foundations of Chemistry I Lecture 3
CHEM 122N Foundations of Chemistry I Laboratory 1
CHEM 123N Foundations of Chemistry II Lecture 3
CHEM 124N Foundations of Chemistry II Laboratory 1-4
or CHEM 125 Foundations of Chemistry II Lab with Introduction to Chemical Research
CHEM 211 Organic Chemistry I Lecture 3
CHEM 212 Organic Chemistry I Laboratory 2
CHEM 213 Organic Chemistry II Lecture 3
CHEM 214 Organic Chemistry II Laboratory 2
or CHEM 216 Advanced Organic Chemistry Laboratory
CHEM 321 Analytical Chemistry Lecture 5
& CHEM 322 and Analytical Chemistry Laboratory
CHEM 351 Inorganic Chemistry 3
CHEM 331 Physical Chemistry Lecture I 3
CHEM 332W Experimental Physical Chemistry I 2
CHEM 333 Physical Chemistry Lecture II 5
& CHEM 334W and Experimental Physical Chemistry II
CHEM 421 Instrumental Analysis Lecture 6
& CHEM 422 and Instrumental Analysis Laboratory
CHEM 441 Biochemistry Lecture 3
CHEM 449 Environmental Chemistry 3
CHEM 485 Chemistry and Biochemistry Seminar 1
Select one CHEM elective from the following: 3
CHEM 415 Intermediate Organic Chemistry
CHEM 439 Introduction to Pharmaceutical Chemistry
CHEM 443 Intermediate Biochemistry
CHEM 451 Advanced Inorganic Chemistry
Select one CHEM Laboratory from the following: 2-4
CHEM 352 Inorganic Chemistry Laboratory
CHEM 442W Biochemistry Laboratory

Other Required courses

MATH 211 Calculus I 4
MATH 212 Calculus II 4

3 Chemistry and Biochemistry

MATH 312 Calculus III 4
Total Hours 66-71

Chemistry majors must have a C or better in all courses required for the major, including prerequisite courses, and must complete a minimum of 12 credits in upper level (300/400) chemistry courses at Old Dominion University. Written permission by the chief departmental advisor or chair is required prior to taking upper level chemistry courses at other institutions.

The professional education core courses and requirements

STEM 101 Step 1 – Inquiry Approaches to Teaching 1
STEM 102 Step 2 - Inquiry Based STEM Lesson Design 1
STEM 201 Knowing and Learning in STEM Education 3
STEM 202 Classroom Interactions in STEM Education 3
STEM 401 Project Based Instruction in STEM Education 3
STEM 402 Perspectives on STEM 3
STEM 485 Apprentice Teaching 9
CHEM 468 Research Methods in Mathematics and Science 3
Total Hours 26

Four-Year Plan - Chemistry Major with Teaching Licensure - BS (http://catalog.odu.edu/undergraduate/collegeofsciences/chemistrybiochemistry/chemistry-chemistryed-bs-fouryearplan)

This is a suggested curriculum plan to complete this degree program in four years. Please consult information in this Catalog, Degree Works, and your academic advisor for more specific information on course requirements for this degree.

Preparation for Medically Related Fields

Students seeking careers in pharmacy, medicine, dentistry, or veterinary science are advised to complete a major in a specific discipline. Such students electing either chemistry or biochemistry as their major must meet all of the requirements listed above for the degree of Bachelor of Science with a major in chemistry or biochemistry. In addition, students must complete all of the prerequisite coursework specified for admission into the professional program of their choice. Students should consult the Office of Admissions of such professional programs for specific prerequisite coursework and other entrance requirements. Students are also advised to register with the Prehealth Advisory Committee at Old Dominion University (683-6790).

Bachelor of Science–Biochemistry Major

Lower-Division General Education

Written Communication * 6
Oral Communication 3
COMM 101R Public Speaking 3
Mathematics 3
MATH 163 Precalculus II (required)
Language and Culture 0-6
Information Literacy and Research (can be met by CHEM 125) 0-3
Human Creativity 3
Interpreting the Past 3
Philosophy and Ethics 3
Literature 3
The Nature of Science 8
Required Chemistry Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121N</td>
<td>Foundations of Chemistry I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N</td>
<td>Foundations of Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 123N</td>
<td>Foundations of Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124N</td>
<td>Foundations of Chemistry II Laboratory</td>
<td>1-4</td>
</tr>
<tr>
<td>or CHEM 125</td>
<td>Foundations of Chemistry II Lab with Introduction to Chemical Research</td>
<td>1-4</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 214</td>
<td>Organic Chemistry II Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>or CHEM 216</td>
<td>Advanced Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 321</td>
<td>Analytical Chemistry Lecture</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 322</td>
<td>Analytical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Physical Chemistry Lecture I</td>
<td>6</td>
</tr>
<tr>
<td>& CHEM 333</td>
<td>Physical Chemistry Lecture II</td>
<td></td>
</tr>
<tr>
<td>CHEM 441</td>
<td>Biochemistry Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 442W</td>
<td>Biochemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 443</td>
<td>Intermediate Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Chemistry and Biochemistry Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Other Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 211</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 231N</td>
<td>University Physics I</td>
<td>8</td>
</tr>
<tr>
<td>& PHYS 232N</td>
<td>University Physics II</td>
<td></td>
</tr>
<tr>
<td>BIOL 293</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 303</td>
<td>Genetics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 66-69

Biochemistry majors must have a C or better in all courses required for the major, including prerequisite courses, and must complete a minimum of 12 credits in upper-level (300/400) chemistry courses at Old Dominion University. Written permission by the chief departmental advisor or chair is required prior to taking upper-level chemistry courses at other institutions.

Biochemistry majors can attain an ACS-certified degree for chemistry content if they also complete the following:

- CHEM 332W: Experimental Physical Chemistry I
- CHEM 351: Inorganic Chemistry

Elective Credit

Elective credit may be needed to meet the minimum requirement of 120 credit hours.

Upper-Division General Education

- Option A: Approved Disciplinary Minor (a minimum of 12 hours determined by the department), or second degree or second major.
- Option B: Interdisciplinary Minor (specifically 12 hours, 3 of which may be in the major)
- Option C: International Business and Regional Courses or an approved Certification Program such as teaching licensure
- Option D: Two Upper-Division Courses from outside the College of Sciences and not required by the major (6 hours)

Requirements for Graduation

Requirements for graduation include a minimum cumulative grade point average of 2.00 overall and in the major, a grade of C or better in all courses required for the major, including prerequisite courses, 120 credit hours, which must include both a minimum of 30 credit hours overall and 12 credit hours in upper-level courses in the major program from Old Dominion University, completion of ENGL 110C, ENGL 211C or ENGL 221C or ENGL 231C, and the writing intensive (W) course in the major with a grade of C or better, and completion of Senior Assessment. Additional hours may be required to meet the foreign language requirement. Biochemistry majors may not use the chemistry minor to fulfill upper-division general education requirements.

Four-Year Plan - Biochemistry - BS

This is a suggested curriculum plan to complete this degree program in four years. Please consult information in this Catalog, Degree Works, and your academic advisor for more specific information on course requirements for this degree.

Linked Bachelor's/Master's Degree Programs

The linked B.S. in biochemistry and the M.S. in chemistry allows exceptional students to count up to 12 hours of graduate courses toward both a B.S. degree in biochemistry and an M.S. degree in chemistry. Students in the combined program must complete Senior Thesis I and II (CHEM 490 and CHEM 499), be accepted into the chemistry master’s program, and earn a minimum of 150 credit hours (120 for the undergraduate degree and 30 for the graduate degree). Additional requirements apply, Please see the Chief Departmental Advisor.

Bachelor of Science—Biochemistry Major with Teaching Licensure*

This program leads to eligibility for teacher licensure in Virginia and is available only to individuals holding a baccalaureate degree or completing requirements for a Bachelor of Science degree in biochemistry. Due to changing University requirements, national accreditation standards, and the Virginia Board of Education licensure regulations, the teacher preparation programs in the College of Sciences are under constant revision. Any changes resulting from these factors supersede the program requirements described in this Catalog. Students are encouraged to obtain current program information from their advisors and the Office of Clinical Experiences website at https://www.odu.edu/occe.

*Licensure pending approval of the Virginia Department of Education
Admission
Students must first declare the biochemistry teacher preparation track as their major with the chemistry departmental advisor. All students must apply for and be admitted into the approved biochemistry teacher preparation program. Students must meet the required criteria for admission by passing the Virginia Board of Education prescribed assessments and earn the minimum required grade point averages (GPA).

Virginia Board of Education Prescribed Assessments for Admission to an Approved Teacher Education Program
Old Dominion University students seeking admission to an approved teacher education program must have submitted Praxis Core or approved alternative test of mathematics, reading, and writing (SAT or ACT).

For the most current information on the prescribed Virginia Board of Education admission assessment, visit the Office of Clinical Experiences website at https://www.odu.edu/oce and review the Professional Education Handbook.

Required grade point averages (GPA)
- A cumulative GPA of 2.75 is required.
- A major/content GPA of 2.75 is required - all chemistry courses must be passed with a grade of C (2.0) or above and all other science content courses must be passed with a grade of C- or higher.
- A professional education GPA of 2.75 is required - all professional education courses must be passed with a grade of C- or higher.

Although students may enroll in a limited number of education courses, students must be admitted into the approved biochemistry teacher preparation program prior to enrolling in any instructional strategies practicum education course. Students must also meet with an education advisor in the Office of Clinical Experiences.

Continuance
Students must maintain a cumulative GPA of 2.75, a major/content GPA of 2.75 and a professional education GPA of 2.75. Chemistry courses must be passed with a grade of C (2.0) or higher. The remaining courses required for the major and in the professional education core must be completed with a grade of C- or higher for continuance. A professional education GPA of 2.75 is required for continuance. Students must take and pass the Virginia Communication and Literacy Assessment (VCLA) and the Praxis Subject Assessment, Chemistry content knowledge (formerly Praxis II) prior to or while enrolled in the instructional strategies course. All assessments must be passed prior to the start of the Teacher Candidate Internship Orientation session.

Background Clearance Requirement
Old Dominion University requires a background clearance check of candidates interested in many of the professional education programs. Professional education programs have several field experiences that are required for continuation and graduation from the program. The background clearance must be successfully completed prior to a field experience placement. Candidates will be provided a field experience placement when the background check process is completed with resolution of any issues. The process to complete the ODU background check is located at: http://www.odu.edu/success/academic/teacher-education/placement/background-checks. The ODU clearance process includes: an FBI fingerprint, a child protective service/social service review, and a Virginia State Police sex offender registry review. Candidates interested in the professional education programs are advised to complete this clearance process immediately upon entry into the program since the clearance process takes a minimum of eight weeks to complete.

Virginia Board of Education Prescribed Assessments for Licensure
Virginia Communication and Literacy Assessment (VCLA) – a passing composite score of 470 is required on this reading and writing assessment Praxis Subject Assessment, Chemistry content knowledge (test code: 5245) – passing score of 153 is required

To review more information on the Virginia Board of Education prescribed assessments visit the Office of Clinical Experiences website at https://www.odu.edu/oce.

Graduation
Requirements for graduation include completion of ENGL 110C, ENGL 211C or ENGL 221C or ENGL 231C, and the writing intensive (W) course in the major with a grade of C or better, completion of the Senior Assessment, a minimum cumulative 2.75 GPA, in the major area, and in the professional education core, with no grade less than a C in the major and C- in the professional education core; successful completion of the Teacher Candidate Internship and a minimum of 130 credit hours, which must include both a minimum of 33 credit hours overall and 12 credit hours in upper-level courses in the major program from Old Dominion University. Note that a C (2.0) must be earned in all chemistry courses used to satisfy departmental requirements.

Additional hours may be required to meet the foreign language requirement. The professional education core satisfies the Upper-Division General Education requirement.

The curriculum is as follows:

Lower-Division General Education

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Communication *</td>
<td>6</td>
</tr>
<tr>
<td>Oral Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 101R Public Speaking</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 163 Precalculus II (required)</td>
<td></td>
</tr>
<tr>
<td>Language and Culture</td>
<td>0-6</td>
</tr>
<tr>
<td>Information Literacy and Research (can be met by CHEM 125)</td>
<td>0-3</td>
</tr>
<tr>
<td>Human Creativity</td>
<td>3</td>
</tr>
<tr>
<td>Interpreting the Past</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>The Nature of Science</td>
<td>8</td>
</tr>
<tr>
<td>BIOL 121N General Biology I</td>
<td></td>
</tr>
<tr>
<td>& BIOL 122N General Biology I Lab</td>
<td></td>
</tr>
<tr>
<td>BIOL 123N & BIOL 124N General Biology II Lab</td>
<td></td>
</tr>
<tr>
<td>Impact of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Human Behavior</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 101S Environmental Geography</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>38-47</td>
</tr>
</tbody>
</table>

* Grade of C or better required in both courses

In addition to completing the University's lower-division general education requirements and upper-division general education requirements, a biochemistry major seeking teacher licensure must complete the following courses.

Required Chemistry courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121N Foundations of Chemistry I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122N Foundations of Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 123N Foundations of Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124N Foundations of Chemistry II Laboratory</td>
<td>1-4</td>
</tr>
<tr>
<td>or CHEM 125 Foundations of Chemistry II Lab with Introduction to Chemical Research</td>
<td></td>
</tr>
<tr>
<td>CHEM 211 Organic Chemistry I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212 Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 213 Organic Chemistry II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 214 Organic Chemistry II Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>
Biochemistry majors must have a C or better in all courses required for the major, including prerequisite courses, and must complete a minimum of 12 credits in upper level (300/400) chemistry courses at Old Dominion University. Written permission by the chief departmental advisor or chair is required prior to taking upper-level chemistry courses at other institutions.

The professional education core courses and requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM 101</td>
<td>Step 1 – Inquiry Approaches to Teaching STEM</td>
<td>1</td>
</tr>
<tr>
<td>STEM 102</td>
<td>Step 2 - Inquiry Based STEM Lesson Design</td>
<td>1</td>
</tr>
<tr>
<td>STEM 201</td>
<td>Knowing and Learning in STEM Education</td>
<td>3</td>
</tr>
<tr>
<td>STEM 202</td>
<td>Classroom Interactions in STEM Education</td>
<td>3</td>
</tr>
<tr>
<td>STEM 401</td>
<td>Project Based Instruction in STEM Education</td>
<td>3</td>
</tr>
<tr>
<td>STEM 402</td>
<td>Perspectives on STEM</td>
<td>3</td>
</tr>
<tr>
<td>STEM 485</td>
<td>Apprentice Teaching</td>
<td>9</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Research Methods in Mathematics and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 26

Four-Year Plan - Biochemistry Major with Teaching Licensure - BS

http://catalog.odu.edu/undergraduate/collegeofsciences/chemistrybiochemistry/biochemistryed-bs-fouryearplan

This is a suggested curriculum plan to complete this degree program in four years. Please consult information in this Catalog, Degree Works, and your academic advisor for more specific information on course requirements for this degree.

Minor in Chemistry

The chemistry minor consists of 13 credits of which nine credits must be selected from the following:

Select nine credits from the following: 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry II Lecture</td>
</tr>
<tr>
<td>CHEM 321</td>
<td>Analytical Chemistry Lecture</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Physical Chemistry Lecture I</td>
</tr>
<tr>
<td>CHEM 333</td>
<td>Physical Chemistry Lecture II</td>
</tr>
<tr>
<td>CHEM 351</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 411</td>
<td>Natural Products Chemistry in the Caribbean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 321</td>
<td>Analytical Chemistry Lecture</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Physical Chemistry Lecture I</td>
</tr>
<tr>
<td>CHEM 333</td>
<td>Physical Chemistry Lecture II</td>
</tr>
<tr>
<td>CHEM 411</td>
<td>Natural Products Chemistry in the Caribbean</td>
</tr>
</tbody>
</table>

The courses designated for the minor and taken by students must be completed with an overall cumulative grade point average of 2.00 or better. CHEM 121N/CHEM 122N and CHEM 123N/CHEM 124N must be completed as prerequisites for the minor in chemistry and are not included in the calculation of the grade point average for the minor. Additional prerequisite courses may also be required and are not included in the grade point average for the minor. Students electing the minor must complete a minimum of six credit hours in the minor requirement through courses offered by Old Dominion University. Any substitutions must be approved in writing by the chief departmental advisor.

Honors in Chemistry

The honors program provides qualified students the opportunity for supervised individual study in their areas of interest. Admission to the program requires a cumulative GPA of 3.25 or higher and a GPA of 3.50 or higher in the major. Students must take two upper-division courses designated by the department to be honors courses. These are termed “Contract Honors Courses.” A description of the procedures for these contract courses is found in the Honors College section of this Catalog.

Advanced Placement

Students who receive a qualifying score on the Advanced Placement of the College Board exam in chemistry may receive credit for introductory chemistry courses. Students who score a 3 on the AP exam may receive 4 credits for either CHEM 105N/CHEM 106N or CHEM 121N/CHEM 122N. The appropriate credit will be determined after consultation with an advisor. Students who receive a score of 4 or 5 on the AP exam will receive 8 credits for CHEM 121N/CHEM 122N - CHEM 123N/CHEM 124N. Credit for CHEM 107N/CHEM 108N is not awarded by the AP exam. Students may also refer to the section of this Catalog on Prior Learning Assessment Credit Options at the Undergraduate Level.

CHEMISTRY AND BIOCHEMISTRY Courses

CHEM 103, Introductory Chemistry, 3 Credits.

An introductory course designed to acquaint the student with the basic principles of chemistry. Prerequisite: knowledge of basic algebra.
CHEM 105N. Introductory Chemistry. 3 Credits.
This course is the first part of a two-semester sequence of chemistry covering topics in general, organic, and biological chemistry. In this part, an introduction to the principles of inorganic (general) chemistry is provided. The topics to be covered include measurements, atoms and elements, compounds and their bonds, energy and matter, gases, solutions, acids and bases, chemical reactions and quantities, chemical equilibrium, and nuclear chemistry. This course does not meet the prerequisite for CHEM 123N, and cannot be used toward the CHEM major or minor. Students wishing to pursue advanced study in chemistry should take CHEM 121N, CHEM 122N, CHEM 123N, and CHEM 124N. Credit for CHEM 105N is not allowed if a student has prior credit for CHEM 121N. CHEM 105N + CHEM 106N satisfy four credits of the University's Nature of Science general education requirement. Corequisite: CHEM 106N. Prerequisite: knowledge of basic algebra.

CHEM 106N. Introductory Chemistry Laboratory. 1 Credit.
An introduction to common laboratory techniques and the process of science is provided. CHEM 105N + CHEM 106N satisfy four credits of the University's Nature of Science general education requirement. Pre- or corequisite: CHEM 105N.

CHEM 107N. Introductory Organic and Biochemistry. 3 Credits.
This course is the second part of a two-semester sequence of chemistry covering topics in general, organic, and biological chemistry. In this part, an introduction to organic compounds and their role in biological systems is provided. The topics to be covered include the structure, nomenclature, and reactivity of organic compounds, the structure and function of important biomolecules, and the chemistry of metabolic pathways. This course does not meet the prerequisite for CHEM 211, and cannot be used toward the CHEM major or minor. Students wishing to pursue advanced study in chemistry should take CHEM 121N, CHEM 122N, CHEM 123N, and CHEM 124N. CHEM 107N + CHEM 108N satisfy four credits of the University's Nature of Science general education requirement. Corequisite: CHEM 108N. Prerequisite: CHEM 105N with a grade of C or better.

CHEM 108N. Introductory Organic and Biochemistry Laboratory. 1 Credit.
Laboratory experiments involving organic compounds and biomolecules are performed. CHEM 107N + CHEM 108N satisfy four credits of the University's Nature of Science general education requirement. Prerequisite: CHEM 106N with a grade of C or better. Pre- or corequisite: CHEM 107N.

CHEM 121N. Foundations of Chemistry I Lecture. 3 Credits.
This is the first of a two-course series, designed for science and engineering majors, that prepares the student for subsequent studies in molecular science and constitutes the foundation for all upper-level chemistry courses. Topics include the descriptive chemistry of selected elements, modern atomic and molecular structure, stoichiometry, thermochemistry, and gas laws. A student receiving credit for CHEM 121N cannot receive additional credit for CHEM 103 or CHEM 105N or CHEM 137N. CHEM 121N + CHEM 122N satisfy 4 credits of the University's Nature of Science general education requirement. Prerequisites: MATH 102M or MATH 103M or higher with a grade of C or better and a qualifying score on the Chemistry Placement Exam or successful completion of the Chemistry Placement online modules or CHEM 103 or CHEM 105N with a grade of C or better. Pre- or corequisites: CHEM 122N.

CHEM 122N. Foundations of Chemistry I Laboratory. 1 Credit.
Laboratory experiments are designed to complement the topics presented in the companion lecture course, CHEM 121N. A student receiving credit for CHEM 122N cannot receive additional credit for CHEM 106N. CHEM 121N + CHEM 122N satisfy 4 credits of the University's Nature of Science general education requirement. Pre- or corequisite: CHEM 121N.

CHEM 123N. Foundations of Chemistry II Lecture. 3 Credits.
This is the second of a two-course series, designed for science majors, that prepares the student for subsequent studies in molecular science and constitutes the foundation for all upper-level chemistry courses. Topics include states of matter, solutions, electrochemistry, thermodynamics, equilibria, and kinetics. CHEM 123N + CHEM 124N satisfy 4 credits of the University's Nature of Science general education requirement. Prerequisites: CHEM 121N with a grade of C or better.

CHEM 124N. Foundations of Chemistry II Laboratory. 1 Credit.
Laboratory experiments are designed to complement the topics in the companion lecture course, CHEM 123N. CHEM 123N + CHEM 124N satisfy 4 credits of the University's Nature of Science general education requirement. Prerequisites: CHEM 121N and CHEM 122N with grades of C or better. Pre- or corequisite: CHEM 123N.

CHEM 125. Foundations of Chemistry II Lab with Introduction to Chemical Research. 4 Credits.
This course introduces students to information literacy and research in chemistry. Students will develop skills in searching, evaluation, citing and ethics associated with information required for research projects. Further, students will gain experience in experimental design and chemical research. Corequisite: CHEM 123N. Prerequisites: CHEM 121N with a grade of B or better AND CHEM 122N with a grade of B or better AND permission of the instructor.

CHEM 171T. Influence of Polymers on Society. 3 Credits.
In this course, the history of synthetic and natural polymers will be studied from their initial development to modern day. Through these studies, students will learn how polymers are produced, the properties of polymers, and the many application of polymers. Further, the impact these materials have on society will be examined in many different areas such as medicine, electronics, consumer goods and the environment.

CHEM 173T. Nutritional Biochemistry. 3 Credits.
Students will explore the role biotechnology plays in understanding and advancing nutrition and the effects this has on human health, development and societies. The key biological molecules such as vitamins, amino acids, proteins, fats and carbohydrates and their nutritional functions will be discussed. Nutritional biochemistry as it relates to human development, medicine and the evolution of human species will be explored. Students will review present day nutritional issues such as popular diets, organic foods, farming practices and advances such as genetically modified foods.

CHEM 175T. Neurotechnology. 3 Credits.
Neurotechnology is the technology used to understand (assessment neurotechnology) and moderate (intervention neurotechnology) brain chemistry with regards to various aspects of consciousness, thought, memory, perception, addiction and other higher order activities and disorders in the brain. From pharmaceutical drugs to brain scanning, the impact of neurotechnology affects nearly everyone either directly or indirectly - for example: drug use for depression, sleep, ADD, or neurotic behavior; cancer scanning; stroke rehabilitation; etc. This course will explore the basics of neurotechnology and its impact on human behavior and performance as well as broader impacts on society. Further, students will learn how neurotechnology is used to assess and intervene in the neurochemistry of the brain with a particular emphasis on addictive behavior and neurodegenerative disorders.

CHEM 195. Selected Topics. 1-3 Credits.
Selected laboratory or lecture topics designed for students who need to supplement a transfer course to fulfill a course requirement. Prerequisite: permission of the chief departmental advisor or chair of the department.

CHEM 211. Organic Chemistry I Lecture. 3 Credits.
Introduction to organic compounds, isomerism and nomenclature, stereochemistry and conformational analysis, in depth mechanistic understanding of proton transfer reactions, substitution and elimination reactions, and addition to C=C bonds. Prerequisites: CHEM 123N with a grade of C or better.

CHEM 212. Organic Chemistry I Laboratory. 2 Credits.
Experience is offered in fundamental laboratory techniques applicable to the characterization, separation and purification of various organic compounds including stereoisomers and introduction to organic reactions. Prerequisites: CHEM 124N or CHEM 125 with a grade of C or better. Pre- or corequisite: CHEM 211 with a grade of C or better.

CHEM 213. Organic Chemistry II Lecture. 3 Credits.
Chemistry of carbon compounds with in-depth treatments of reaction mechanisms, modern spectral techniques, and new synthetic methods to meet the needs of chemistry and biochemistry majors. Prerequisite: CHEM 211 with a grade of C or better.
CHEM 214. Organic Chemistry II Laboratory, 2 Credits.
Experience is offered in synthetic, separation, and analytical methods of organic chemistry. Modern synthetic and spectroscopic techniques are introduced. Prerequisites: CHEM 212 with a grade of C or better. Pre- or corequisite: CHEM 213 with a grade of C or better.

CHEM 216. Advanced Organic Chemistry Laboratory, 2 Credits.
Experience is offered in advanced organic reactions and spectroscopic techniques. In addition, students will carry out a short, customized, research project in Organic Chemistry or Organic Materials. Prerequisites: CHEM 211 and CHEM 212 with a grade of C or better; approval by the course instructor or coordinator. Pre- or corequisite: CHEM 213.

CHEM 321. Analytical Chemistry Lecture, 3 Credits.
A study of the fundamental principles of quantitative chemical analysis including the application of principles of equilibria to analytical processes. Emphasis is given to gravimetric and titrimetric methods as well as consideration of electrical, optical, and other methods of chemical analysis. Prerequisites: CHEM 123N and MATH 163 or MATH 205 with a grade of C or better.

CHEM 322. Analytical Chemistry Laboratory, 2 Credits.
Statistical principles or measurements and error analysis are integrated with experiments designed to evaluate and refine techniques of fundamental measurements to a level of analytical competency. These techniques are applied to the analysis of samples using gravimetric, titrimetric, electrical and optical methods. Prerequisites: CHEM 124N or CHEM 125 with a grade of C or better. Pre- or corequisite: CHEM 321 or permission of the instructor.

CHEM 331. Physical Chemistry Lecture I, 3 Credits.
Quantum chemistry, molecular structure, and spectroscopy. Prerequisites: CHEM 321, CHEM 213 and PHYS 231N-PHYS 232N with a grade of C or better. Pre- or corequisite: MATH 312 with a grade of C or better.

CHEM 332W. Experimental Physical Chemistry I, 2 Credits.
A laboratory class focusing on a variety of physical chemical techniques. Topics may include electronic, vibrational (Raman) and NMR spectroscopies, calorimetry, viscosity, and atomic force microscopy. This is a writing intensive course, aiming to achieve an in-depth understanding of the physical principles underlying the techniques. Prerequisites: grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C. Pre- or corequisite: CHEM 331 with a grade of C or better.

CHEM 333. Physical Chemistry Lecture II, 3 Credits.
Chemical thermodynamics of pure substances and solutions, chemical equilibrium, electrochemistry, chemical kinetics, and statistical thermodynamics. Prerequisites: CHEM 331 with a grade of C or better.

CHEM 334W. Experimental Physical Chemistry II, 2 Credits.
A laboratory class focusing on a variety of physical chemical techniques. Topics may include X-Ray Diffraction, Bomb Calorimetry, Thermal Gravimetric Analysis (TGA), Conductance of Solutions, and Polymer Physical Properties. This course may also include a team project that will incorporate many of the techniques learned in the physical chemistry lab sequence. This project will introduce the students to working as a team to address a specific challenge such as one might encounter in an industrial or government laboratory setting. This is a writing intensive course. Prerequisites: grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C. Pre- or corequisite: CHEM 332W and CHEM 333 with a grade of C or better.

CHEM 339T. The Chemistry of the Environment, 3 Credits.
This class explores the impact of chemical technologies on current environmental topics using basic chemical principles and the scientific method as standards for evaluating and understanding pressing environmental issues. Topics include global and ocean warming, air pollution, atmospheric ozone depletion, effects of enhanced UV light, acid rain and ocean acidification, toxic heavy metals, radioactivity and nuclear power plant disasters, indoor air quality and radon, water pollution, sewage and water treatment, drinking water quality, waste disposal and plastics, pesticides, and the food chain. The course will use math to a modest degree including basic Algebra. It is highly recommended that students have passed a college level algebra math class (e.g., MATH 102M or MATH 103M or higher) and one year of high school chemistry. Prerequisites: Any General Education Nature of Science (N) course.

CHEM 343T. Science and Technology in Art, 3 Credits.
This combined lecture and lab course will explore the chemical and physical properties of artists’ materials from pigments and binders to ceramics. Topics will include the nature of light and color, historical origins and development of pigments and artistic methods, synthesis of dyes and pigments, and the application of technology to art historical analysis. The course will include hands-on experience with modern laboratory equipment and field trips to local museums and conservation labs. Prerequisites: Completion of one Nature of Science general education course or permission of the instructor.

CHEM 351. Inorganic Chemistry, 3 Credits.
This foundational course provides an introduction to inorganic chemistry. Topics include periodic law, bonding theory, oxidation/reduction, acid/base theory, descriptive chemistry of the main group, an introduction to transition metal coordination chemistry, and human applications of inorganic chemistry. Prerequisites: Grade of C or better in CHEM 123N.

CHEM 352. Inorganic Chemistry Laboratory, 2 Credits.
Synthesis of metal and nonmetal inorganic compounds and organometallic compounds, their characterization by physical methods, and a study of their properties. Prerequisite: CHEM 124N or CHEM 125. Pre- or corequisite: CHEM 351 with a grade of C or better.

CHEM 365. Undergraduate Teaching Experience, 1-3 Credits.
Teaching experience in a chemistry classroom or laboratory setting under the direct supervision of the course instructor. Prerequisite: junior standing and/or approval of the appropriate departmental coordinator. Available for Pass/Fail grading only.

CHEM 367. Cooperative Education, 1-3 Credits.
May be repeated for credit. Student participation for credit is based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and the Cooperative Education program prior to the semester in which the work experience is to take place. Available for pass/fail grading only. (qualifies as a CAP experience) Prerequisite: approval by the department and Cooperative Education/Career Development Services in accordance with the policy for granting credit for Cooperative Education programs.

CHEM 369. Chemistry Practicum, 1-3 Credits.
A student may choose a co-op, internship, research, or student teaching experience to gain out-of-class experience related to the major. Prerequisites: CHEM 331/CHEM 332W (Chemistry major) or CHEM 441/CHEM 442W (Biochemistry major) and the approval of the appropriate departmental coordinator.

CHEM 411/511. Natural Products Chemistry in the Carribean, 4 Credits.
A bioinorganic and natural products course that entails the chemistry of the use of chromium, vanadium, and herbs in medicine and the use of tunicates as biomonitor of heavy metal pollution in Jamaica. This is a study abroad course intended for the Maymester term. Prerequisites: CHEM 211 and CHEM 212 with a C or better.

CHEM 415/515. Intermediate Organic Chemistry, 3 Credits.
An in-depth look at organic reaction mechanisms, including polar, pericyclic, radical and organometallic reactions. Prerequisites: CHEM 211-CHEM 213 with a grade of C or better.
CHEM 421/521. Instrumental Analysis Lecture. 3 Credits.
Designated to be taken concurrently with CHEM 422/CHEM 522. A study of the basic principles of spectroscopic, chromatographic, and electrochemical methods of quantitative chemical analysis. Methods of chemical instrumentation are also included. Prerequisite: CHEM 331 with a grade of C or better.

CHEM 422/522. Instrumental Analysis Laboratory. 3 Credits.
An intensive laboratory study of the principles of analytical chemistry. Experiments in spectroscopic, chromatographic, and electrochemical methods are conducted to illustrate fundamental principles and to provide the opportunity to develop skills in the use of instrumentation for chemical measurement. Prerequisite: CHEM 332W with a grade of C or better. Pre- or corequisite: CHEM 421/CHEM 521 with a grade of C or better.

CHEM 439/539. Introduction to Pharmaceutical Chemistry. 3 Credits.
An introduction to the fundamental concepts of drug action including pharmacodynamics (effect of drugs on the body) and pharmacokinetics (ADME: absorption, distribution, metabolism and elimination) of drugs; an introduction to the process of new drug discovery and synthesis will also be taught. Prerequisites: CHEM 213 and CHEM 214 (or CHEM 216) with a grade of "C" or higher; CHEM 321 and CHEM 441 recommended.

CHEM 441/541. Biochemistry Lecture. 3 Credits.
This course is a one-semester survey of the major molecular constituents, bioenergetics, enzymes, nucleic acid structure, and genetic information transfer pathways fundamental to biochemistry. Prerequisite: CHEM 213 with a grade of C or better.

CHEM 442W/542. Biochemistry Laboratory. 4 Credits.
Principles and techniques of biochemical and immunological procedures involving protein characterization and isolation, enzymology, bioinformatics, and common molecular biology techniques for nucleic acids will be presented. This is a writing intensive course. Prerequisites: CHEM 214 with a grade of C or better and ENGL 211C or ENGL 221C or ENGL 231C with a grade of C or better. Pre- or corequisite: CHEM 441/ CHEM 541 with a grade of C or better.

CHEM 443/543. Intermediate Biochemistry. 3 Credits.
This course presents and in-depth study of protein structure, folding, and synthesis. The major metabolic pathways will be studied in detail regarding thermodynamics and mechanism of regulation or control of individual enzymes and entire metabolic pathways. Concepts of metabolic disease will be introduced and effects on integrated metabolism will be presented. Prerequisite: CHEM 441/CHEM 541 with a grade of C or better or equivalent.

CHEM 449/549. Environmental Chemistry. 3 Credits.
An overview of the natural chemical systems operating in the atmosphere, in the terrestrial environment (both water and soils), and in the oceans, and the potential effects that human activities may have on them. Specific topics include the origin and evolution of the earth and life, the chemistry of the atmosphere (including the ozone layer and greenhouse effect), the organic and inorganic components of soil and water, chemical weathering of rocks, metal complexation, biological processes in soil and water, and global-scale chemical processes. Prerequisites: CHEM 123N, CHEM 213 and CHEM 321 with a grade of C or higher or permission of the instructor.

CHEM 451/551. Advanced Inorganic Chemistry. 3 Credits.
Theoretical aspects of modern inorganic chemistry: bonding theories, stereochemistry, acid-base theories, coordination compounds, organometallic and bioinorganic compounds. Prerequisites: CHEM 351 with a grade of C or better.

CHEM 452/552. Advanced Inorganic Chemistry Laboratory. 2 Credits.
Synthesis of metal and nonmetal inorganic compounds and organometallic compounds, their characterization by modern physical methods, and a study of their properties. Prerequisites: CHEM 351 and CHEM 352.

CHEM 453/553. Essentials of Toxicology. 3 Credits.
Fundamental principles of toxicology: dose-response relationship, toxicologic testing, chemical and biological factors influencing toxicity, organ toxicity, carcinogenesis, mutagenesis, teratogenesis. Prerequisite: CHEM 213 with a grade of C or higher.

CHEM 460/560. Frontiers in Nanoscience and Nanotechnology. 1 Credit.
Nanotechnology presents unparalleled opportunities for advances in technology and medicine. Simultaneously, nanotechnology presents new challenges to organisms and to our environment. These undefined risk factors threaten to slow the development of new technologies and novel medical therapies. This course will review: structure, synthesis and properties of key nanomaterials; key applications of nanomaterials in technology and medicine; and impacts of nanomaterials on plant and animal physiology and the environment more generally. This course will be team-taught by faculty members in Biological Sciences, Chemistry and Biochemistry, and Engineering. Prerequisite: junior standing.

CHEM 468. Research Methods in Mathematics and Science. 3 Credits.
Emphasizes the tools and techniques used to solve scientific problems. Topics include use and design of experiments, use of statistics to interpret experimental results, mathematical modeling of scientific phenomena, and oral and written presentation of scientific results. Students will perform four independent inquiries, combining skills from mathematics and science to solve research problems. Required for Chemistry teaching licensure track; not available as upper-division elective in content area. Prerequisites: CHEM 331, STEM 201, and admission to the MonarchTeach program.

CHEM 485. Chemistry and Biochemistry Seminar. 1 Credit.
The formal presentation of a chemical or biochemical topic before students and faculty. Students will also take Major Field Test during this course. Prerequisite: CHEM 331 and Senior standing.

CHEM 490. Senior Thesis I. 1 Credit.
Part one of a two-semester thesis project involving literature research, development of scientific writing skills, and obtaining lab experience using a variety of techniques and equipment. Each student will undertake a research experience under the supervision of a departmental faculty member. A preliminary report of research findings is required at the end of the semester. Prerequisite: Chemistry or Biochemistry major; Senior standing; Cumulative GPA of 3.20 or higher.

CHEM 494. Entrepreneurship in Chemistry and Biochemistry. 3 Credits.
A high level of economic activity and development for any industrialized nation has at its core a strong STEM component. Within this component, the fields of chemistry and biochemistry form one of the strongest inter-disciplinary links by providing an understanding of the processes and products at a molecular level. This course will allow students to combine their academic knowledge in chemistry and biochemistry with the needs of real-world businesses to formulate an economically viable business plan that encompasses a scientifically and economically sound proof-of-concept. Prerequisite: Junior standing.

CHEM 495. Selected Topics. 1-3 Credits.
Study of selected topics. Prerequisite: permission of the instructor.

CHEM 497. Independent Study. 1 Credit.
An opportunity is afforded students to undertake independent study or an original investigation under the direction of a faculty member. Prerequisites: course background appropriate to the proposed study project and approval of the department chair and the faculty/research advisor.

CHEM 498. Independent Study. 2 Credits.
An opportunity is afforded students to undertake independent study or an original investigation under the direction of a faculty member. Prerequisites: course background appropriate to the proposed study project and approval of the department chair and the faculty/research advisor.

CHEM 499. Senior Thesis II. 2 Credits.
Continuation of CHEM 490. The research culminates in a thesis that includes a literature review, description of methods, results and conclusions, and an oral presentation. Prerequisite: CHEM 490 and a cumulative GPA of 3.20 or better.