Biomedical Engineering Program

2123G Engineering Systems Building
757-683-3752
www.odu.edu/eng/programs/biomedical/

Dean Krusienki, Graduate Program Director

Biomedical Engineering Program General Description

The Biomedical Engineering graduate degree programs are available to full-time and part-time students seeking to improve their research and professional skills in biomedical engineering. The programs strive to provide the highest quality engineering education at the graduate level, to engage in scholarly research at the forefront of biomedical engineering, and to serve the profession of biomedical engineering. Cutting-edge research opportunities and instruction are offered in:

- Bioelectrics and Pulsed Power
- Cellular & Molecular Bioengineering
- Cardiovascular Engineering
- Medical Image Analysis and Simulation
- Musculoskeletal Biomechanics
- Neural Engineering
- Plasma Medicine
- Systems Biology & Computational Bioengineering

Facilities: The Advanced Signal Processing in Engineering and Neuroscience (ASPEN) Laboratory; the Biomachina Laboratory; the Biomechanics Laboratory; the Cardiac Electrophysiology Laboratory; the Cellular Mechanobiology Laboratory; the Medical Imaging, Diagnosis and Analysis (MIDA) Laboratory; the Medical Simulations Laboratory; the Plasma Engineering and Medicine Institute (PEMI); the Systems Analysis of Metabolic Physiology and Exercise (SAMPE) Laboratory; and the Virginia Institute for Imaging and Vision Analysis (VIIVA).

The program also has strong ties to several other on- and off-campus laboratories including the Applied Research Center at the Jefferson National Laboratory, the Center for Brain Research and Rehabilitation, the Frank Reidy Research Center for Bioelectrics, and the Virginia Modeling, Analysis and Simulation Center (VMASC). The program is supported by regional, national, and international clinical collaborators. These unique resources position the biomedical engineering program to be a leader in education and research in the Southeast and nationally.

List of Degrees and Certificates

- Master of Engineering – Biomedical Engineering
- Master of Science, Engineering – Biomedical Engineering
- Doctor of Philosophy, Engineering – Biomedical Engineering
- Advanced Engineering Certificate – Biomedical Engineering

Master of Engineering - Biomedical Engineering

Master of Engineering Admission Requirements

Admission to the Master of Engineering program in biomedical engineering is in accordance with Old Dominion University and Frank Batten College of Engineering and Technology requirements for master’s programs as specified in this catalog. Specific additional requirements include the following:

1. Completion of a bachelor’s degree in Engineering, Science or Mathematics from an accredited institution, although students from other educational backgrounds may apply with appropriate leveling courses.

2. A minimum GPA of 3.00 (out of 4.0) is required of most students. A student with a lower GPA meeting ODU’s graduate admission requirements and with evidence of a high level of professional capability may be eligible for admission to the program upon submission of a petition to the graduate program director.

3. Recent scores, typically, not more than five years old, on the Graduate Record Examination’s (GRE) verbal, quantitative, and analytical writing sections must be submitted by all applicants.

4. Two letters of recommendation (typically from faculty in the highest degree program completed when the application is within five years of graduation from that degree program) are encouraged but not required.

5. The applicant must submit a resume and a statement of purpose and goals.

6. Foundation knowledge in physics, basic chemistry, computer programming, and mathematics (including differential equations) is expected.

Master of Engineering Degree Requirements

The Master of Engineering program requires completion of 10 three-credit courses: two BME fundamentals courses, a graduate physiology course, and seven technical electives. The seven technical electives should be chosen to meet the student’s career objectives.

BME Fundamentals *
BME 501 Biomedical Engineering I: Principles
BME 502 Biomedical Engineering II: Applications

Graduate Human Biology or Physiology**

BME Technical Electives (choose four)

BME 554 Introduction to Bioelectrics
BME 562 Introduction to Medical Image Analysis
BME 564 Biomedical Applications of Low Temperature Plasmas
BME 612 Digital Signal Processing I
BME 720 Modern Biomedical Instrumentation
BME 721 Mathematical Modeling in Physiology I
BME 722 Mathematical Modeling in Physiology II
BME 724 Neural Engineering
BME 751 Computational and Statistical Methods in Biomedical Engineering
BME 762 Applied Medical Image Analysis
BME 795 Special Topics in Biomedical Engineering

Approved Technical Electives ***

Total Hours

* Students who have completed BME 401 or BME 402 as part of a previous degree, program, or minor may substitute these courses with graduate-level BME electives approved by the graduate program director.

** Select one graduate course on human biology or physiology to be approved by the graduate program director.

*** The technical elective courses can be selected from the biomedical engineering technical electives or a wide variety of appropriate graduate courses in engineering, biology, chemistry, psychology, computer science, modeling and simulation, mathematics, statistics, or other programs. Technical electives without the BME prefix must be approved by the graduate program director.

Master of Science, Engineering - Biomedical Engineering

Master of Science Admission Requirements

Admission to the Master of Science, Engineering - Biomedical Engineering program is in accordance with Old Dominion University and Frank Batten
College of Engineering and Technology requirements for master’s programs as specified in this catalog. Specific additional requirements include the following:

1. Completion of a bachelor’s degree in Engineering, Science or Mathematics from an accredited institution, although students from other educational backgrounds may apply with appropriate leveling courses.

2. A minimum GPA of 3.00 (out of 4.0) is required of most students. A student with a lower GPA meeting ODU’s graduate admission requirements and with evidence of a high level of professional capability may be eligible for admission to the program upon submission of a petition to the graduate program director.

3. Recent scores, typically, not more than five years old, on the Graduate Record Examination’s (GRE) verbal, quantitative, and analytical writing sections must be submitted by all applicants.

4. Two letters of recommendation (typically from faculty in the highest degree program completed when the application is within five years of graduation from that degree program) are encouraged but not required.

5. The applicant must submit a resume and a statement of purpose and goals.

6. Foundation knowledge in physics, basic chemistry, computer programming, and mathematics (including differential equations) is expected.

Master of Science Degree Requirements

The Master of Science program requires completion of 8 three-credit courses and 6 thesis research credits. The five technical electives should be chosen to meet the student’s research and career objectives.

<table>
<thead>
<tr>
<th>BME Fundamentals*</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 501 Biomedical Engineering I: Principles</td>
<td></td>
</tr>
<tr>
<td>BME 502 Biomedical Engineering II: Applications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Human Biology or Physiology**</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 554 Introduction to Bioelectrics</td>
<td></td>
</tr>
<tr>
<td>BME 562 Introduction to Medical Image Analysis</td>
<td></td>
</tr>
<tr>
<td>BME 564 Biomedical Applications of Low Temperature Plasmas</td>
<td></td>
</tr>
<tr>
<td>BME 612 Digital Signal Processing I</td>
<td></td>
</tr>
<tr>
<td>BME 720 Modern Biomedical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>BME 721 Mathematical Modeling in Physiology I</td>
<td></td>
</tr>
<tr>
<td>BME 722 Mathematical Modeling in Physiology II</td>
<td></td>
</tr>
<tr>
<td>BME 724 Neural Engineering</td>
<td></td>
</tr>
<tr>
<td>BME 751 Computational and Statistical Methods in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>BME 762 Applied Medical Image Analysis</td>
<td></td>
</tr>
<tr>
<td>BME 795 Special Topics in Biomedical Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BME Technical Electives (Choose Three)</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 401 Biomedical Engineering I: Principles</td>
<td></td>
</tr>
<tr>
<td>BME 402 Biomedical Engineering II: Applications</td>
<td></td>
</tr>
<tr>
<td>BME 820 Modern Biomedical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>BME 821 Mathematical Modeling in Physiology I</td>
<td></td>
</tr>
<tr>
<td>BME 822 Mathematical Modeling in Physiology II</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved Technical Electives***</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 699 Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours 30

* Students who have completed BME 401 or BME 402 as part of a previous degree, program, or minor may substitute these courses with graduate-level BME electives approved by the graduate program director.

** Select one graduate course on human biology or physiology to be approved by the graduate program director.

*** The technical elective courses can be selected from the biomedical engineering technical electives or a wide variety of appropriate graduate courses in engineering, biology, chemistry, psychology, computer science, modeling and simulation, mathematics, statistics, or other programs. Technical electives without the BME prefix must be approved by the graduate program director.

Doctor of Philosophy, Engineering - Biomedical Engineering

Doctor of Philosophy Admission Requirements

Admission to the Ph.D. program in biomedical engineering is in accordance with Old Dominion University and Frank Batten College of Engineering and Technology requirements for doctoral programs as specified in this catalog. Specific additional requirements include the following:

1. Completion of a master’s degree in a closely related field is expected. However, students who have completed 24 credits of graduate courses in an appropriate field from an accredited institution or have demonstrated an exceptionally high level of academic capability may petition for direct admittance into the program.

2. A minimum GPA of 3.50 (out of 4.0) is required of most students. A student with a lower GPA meeting ODU's graduate admission requirements and with evidence of a high level of professional capability may be eligible for admission to the program upon submission of a petition to the graduate program director.

3. Recent scores, typically, not more than five years old, on the Graduate Record Examination’s (GRE) verbal, quantitative, and analytical writing sections must be submitted by all applicants.

4. Three letters of recommendation (typically at least two of which are from faculty in the highest degree program completed when the application is within five years of graduation from that degree program) are encouraged but not required.

5. The applicant must submit a resume and a statement of purpose and goals.

6. Foundation knowledge in physics, basic chemistry, computer programming, and mathematics (including differential equations) is expected.

Doctor of Philosophy Degree Requirements

The Ph.D. in biomedical engineering is offered in accordance with the general requirements for doctoral degrees as specified in the Requirements for Graduate Degree Section of this catalog. Specific program of study requirements include the following:

1. Completion of a minimum of 48 hours of graduate credits to include: a minimum of 24 credits of course work beyond the master’s degree and a minimum of 24 credits of dissertation research. At least 15 credits of non-dissertation course work must be at the 800-level.

2. Successful completion of a written diagnostic examination before the end of the first academic year.

3. Successful completion of a written and oral qualifying examination near the completion of the coursework.

4. Successful presentation of a dissertation research proposal at the beginning of the dissertation research.

5. The successful completion and public defense of a dissertation representing independent, original research worthy of publication in a peer-reviewed scholarly journal.

The program of study will be developed with the approval of the graduate program director and the student’s advisor. The program shall include a common core of 12 credits and 12 credits of technical electives.

Common Core

<table>
<thead>
<tr>
<th>BME 820 Modern Biomedical Instrumentation</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 821 Mathematical Modeling in Physiology I</td>
<td></td>
</tr>
<tr>
<td>BME 822 Mathematical Modeling in Physiology II</td>
<td></td>
</tr>
</tbody>
</table>

Biomedical Engineering Program 2
BME 851 Computational and Statistical Methods in Biomedical Engineering

Technical Electives **

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 501</td>
<td>Biomedical Engineering I: Principles</td>
</tr>
<tr>
<td>BME 502</td>
<td>Biomedical Engineering II: Applications</td>
</tr>
<tr>
<td>BME 554</td>
<td>Introduction to Bioelectricity</td>
</tr>
<tr>
<td>BME 562</td>
<td>Introduction to Medical Image Analysis</td>
</tr>
<tr>
<td>BME 564</td>
<td>Biomedical Applications of Low Temperature Plasmas</td>
</tr>
<tr>
<td>BME 612</td>
<td>Digital Signal Processing I</td>
</tr>
<tr>
<td>BME 824</td>
<td>Neural Engineering</td>
</tr>
<tr>
<td>BME 862</td>
<td>Applied Medical Image Analysis</td>
</tr>
<tr>
<td>BME 895</td>
<td>Special Topics in Biomedical Engineering</td>
</tr>
</tbody>
</table>

Total Hours 24

* Students who have completed any of the core courses at the 700-level as part of a previous degree or program may substitute these courses with 800-level BME electives approved by the graduate program director.

** The technical elective courses provide a basis for dissertation research and future career objectives. These courses can be selected from the biomedical engineering technical electives or a wide variety of appropriate graduate courses in engineering, biology, chemistry, psychology, computer science, modeling and simulation, mathematics, statistics, or other programs. No more than six credits from course work satisfying foundation knowledge requirements may be included in the program of study for elective credit. At least 15 credits of non-dissertation course work must be at the 800-level. A minimum of 3 credits must be selected from the biomedical engineering technical electives list; the remaining credits can be selected from this list or other graduate courses with approval of the student’s advisor and the graduate program director.

Advanced Engineering Certificate - Biomedical Engineering

The Graduate Certificate in Biomedical Engineering Program offers students and professionals the opportunity to further their knowledge with advanced study in the growing area of Biomedical Engineering. The program is designed to provide well-rounded instruction in several key facets of Biomedical Engineering. Those who complete the Program receive the Advanced Engineering Certificate in Biomedical Engineering from Old Dominion University and a letter of recognition from the Batten College of Engineering and Technology. Courses taken for the certificate program may later be applied to the M.E. or Ph.D. degree in Biomedical Engineering. For complete information on the admission and certificate requirements, please refer to the Batten College of Engineering and Technology's section on graduate certificate programs at: /graduate/frankbattencollegeengineeringandtechnology/interdisciplinarygraduatecertificateprograms (http://catalog.odu.edu/previous/2017-2018/graduate/frankbattencollegeengineeringandtechnology/interdisciplinarygraduatecertificateprograms)

BIOMEDICAL ENGINEERING Courses

BME 501. Biomedical Engineering I: Principles. 3 Credits.
The course exposes students to principles used in biomedical engineering. The major focus is on physiology including cell, muscle, and the cardiovascular, respiratory, gastrointestinal and central nervous systems. Furthermore, there will be modules on biomechanics, biomaterials, biochemistry, tissue engineering and moral and ethical principles in biomedical engineering.

BME 502. Biomedical Engineering II: Applications. 3 Credits.
The course is a continuation of BME 401 and BME 501. This course exposes students to modern biomedical engineering applications aligned with the principles and physiological processes covered in the previous course. Selected topics include: prosthetic devices, tissue engineering applications, neural interfaces, cardiac devices and imaging techniques. Prerequisites: BME 401 or BME 501.

BME 554. Introduction to Bioelectricity. 3 Credits.
This course covers the electrical properties of cells and tissues as well as the use of electrical and magnetic signals and stimuli in the diagnosis and treatment of disease. Typical topics to be covered include basic cell physiology, endogenous electric fields in the body, electrocardiography, cardiac pacing defibrillation, electrotherapy, electroporation, electrotherapy in wound healing. In addition ultra-short electrical pulses for intracellular manipulation and the application of plasmas to biological systems will be covered.

BME 562. Introduction to Medical Image Analysis. 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. Cross-listed with ECE 562/MSIM 562.

BME 564. Biomedical Applications of Low Temperature Plasmas. 3 Credits.
This course is cross listed between ECE and Biology. It is designed to be taken by senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered. Prerequisites: Senior standing.

BME 612. Digital Signal Processing I. 3 Credits.
This course will present the fundamentals of digital signal processing. Topics will include frequency domain analysis of discrete-time linear systems, sampling and reconstruction of signals, the Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), and digital filter design and implementations. Practical applications and examples will be discussed. Problem solving using MATLAB is required. Cross-listed with ECE 612. Prerequisite: ECE 381 or equivalent.

BME 630. Advanced Bioelectricity. 3 Credits.
A one-semester course covering advanced topics in bioelectricity. The course will cover advanced applications of pulsed power and plasma in the medical, biological and environmental fields. (Cross listed with ENGN 630).

BME 695. Topics in Biomedical Engineering. 3 Credits.
This course will be offered as needed, depending upon the need to introduce special subjects to target specific areas of master’s-level specializations in biomedical engineering.

BME 699. Master’s Thesis. 1-9 Credits.
Directed research for the master’s thesis. Prerequisite: departmental approval.

BME 720. Modern Biomedical Instrumentation. 3 Credits.
This course covers the design of modern biomedical instruments including select diagnostic, assistive, therapeutic, prosthetic, imaging, and virtual devices and systems. Techniques for mechanical, electrical, and chemical sensor and transducer design; stimulation and measurement; data acquisition; digital signal processing; and data visualization will be examined.

BME 721. Mathematical Modeling in Physiology I. 3 Credits.
The first of a two-course series covering human physiology and pathophysiology, with an emphasis on quantitative modeling, simulation, and analysis of the function of cells, organs, and systems. This course focuses on cellular physiology, including homeostasis, membrane ion channels, excitability, calcium dynamics, and intercellular communication.
BME 722. Mathematical Modeling in Physiology II. 3 Credits.
The second course of a two-course series covering human physiology and
pathophysiology with an emphasis on quantitative modeling, simulation, and
analysis of the function of cells, organs, and systems. This course focuses on
systems physiology, including the heart, respiration, muscle, kidneys, and
the endocrine system. Prerequisites: BME 721 or BME 821.

BME 724. Neural Engineering. 3 Credits.
This course presents engineering techniques for the restoration and
augmentation of human function via direct interactions between the nervous
system and artificial devices, with particular emphasis on brain-computer
interfaces. Novel interfaces, hardware and computational issues, and
practical and ethical considerations will also be covered.

**BME 751. Computational and Statistical Methods in Biomedical
Engineering. 3 Credits.**
This course covers the theoretical foundation and application of commonly
used techniques in biomedical engineering. Topics include linear algebra,
partial differential equations, regression analysis, applied probabilities,
multivariate distributions, Bayesian statistics, hypothesis tests, multiple
comparisons, ANOVA, solution of non-linear equations, numerical methods
and optimization. Programming software will be used to perform simulations
and analyze biomedical data. Prerequisites: Graduate status.

BME 762. Applied Medical Image Analysis. 3 Credits.
Course explores hands-on exposure to state-of-the-art algorithms in medical
image analysis, which builds on open-source software (Insight Segmentation
and Registration Toolkit - ITK), as well as the principles of medical image
acquisition in the modalities of clinical interest. Medical imaging modalities
- X-rays, CT, and MRI/ITK image pipeline; image enhancement, feature
detection; segmentation - basic techniques, feature-based classification
and clustering, graph cuts, active contour and surface models; surface
and volume meshing; registration - transformations, similarity criteria;
shape and appearance models are all explored and discussed in this course.
Prerequisites: Knowledge of C++ and object-oriented programming.

BME 783. Digital Image Processing. 3 Credits.
Principles and techniques of two-dimensional processing of images.
Concepts of scale and spatial frequency. Image filtering in spatial and
transform domains. Applications include image enhancement and
restoration, image compressing, biomedical imaging for diagnosis of disease,
and image segmentation for computer vision. Prerequisites: ECE 782 or
ECE 882.

BME 791. Biomedical Engineering Innovation Seminar. 1-3 Credits.
This course is for students interested in research that originates from a
clinical need, is developed in the laboratory and is then implemented
clinically. Seminars by healthcare professionals emphasize clinical needs.
Students follow the biodesign innovation process toward creation of
biotechnologies and devices that address needs.

BME 795. Special Topics in Biomedical Engineering. 1-3 Credits.
Special courses covering selected graduate-level topics in biomedical
engineering.

BME 797. Independent Study. 1-3 Credits.
This course allows students to develop specialized expertise by independent
study (supervised by a faculty member). Prerequisites: departmental
approval.

BME 820. Modern Biomedical Instrumentation. 3 Credits.
This course covers the design of modern biomedical instruments including
select diagnostic, assistive, therapeutic, prosthetic, imaging, and virtual
devices and systems. Techniques for mechanical, electrical, and chemical
sensor and transducer design; stimulation and measurement; data
acquisition; digital signal processing; and data visualization will be
examined.

BME 821. Mathematical Modeling in Physiology I. 3 Credits.
The first of a two-course series covering human physiology and
pathophysiology, with an emphasis on quantitative modeling, simulation, and
analysis of the function of cells, organs, and systems. This course
focuses on cellular physiology, including homeostasis, membrane ion
channels, excitability, calcium dynamics, and intercellular communication.

BME 822. Mathematical Modeling in Physiology II. 3 Credits.
The second course of a two-course series covering human physiology and
pathophysiology with an emphasis on quantitative modeling, simulation, and
analysis of the function of cells, organs, and systems. This course focuses on
systems physiology, including the heart, respiration, muscle, kidneys, and
the endocrine system. Prerequisites: BME 721 or BME 821.

BME 824. Neural Engineering. 3 Credits.
This course presents engineering techniques for the restoration and
augmentation of human function via direct interactions between the nervous
system and artificial devices, with particular emphasis on brain-computer
interfaces. Novel interfaces, hardware and computational issues, and
practical and ethical considerations will also be covered.

**BME 851. Computational and Statistical Methods in Biomedical
Engineering. 3 Credits.**
This course covers the theoretical foundation and application of commonly
used techniques in biomedical engineering. Topics include linear algebra,
partial differential equations, regression analysis, applied probabilities,
multivariate distributions, Bayesian statistics, hypothesis tests, multiple
comparisons, ANOVA, solution of non-linear equations, numerical methods
and optimization. Programming software will be used to perform simulations
and analyze biomedical data. Prerequisites: Graduate status.

BME 862. Applied Medical Image Analysis. 3 Credits.
Course explores hands-on exposure to state-of-the-art algorithms in medical
image analysis, which builds on open-source software (Insight Segmentation
and Registration Toolkit - ITK), as well as the principles of medical image
acquisition in the modalities of clinical interest. Medical imaging modalities
- X-rays, CT, and MRI/ITK image pipeline; image enhancement, feature
detection; segmentation - basic techniques, feature-based classification
and clustering, graph cuts, active contour and surface models; surface
and volume meshing; registration - transformations, similarity criteria;
shape and appearance models are all explored and discussed in this course.
Prerequisites: Knowledge of C++ and object-oriented programming.

BME 883. Digital Image Processing. 3 Credits.
Principles and techniques of two-dimensional processing of images.
Concepts of scale and spatial frequency. Image filtering in spatial and
transform domains. Applications include image enhancement and
restoration, image compressing, biomedical imaging for diagnosis of disease,
and image segmentation for computer vision. Prerequisites: ECE 783 and
ECE 883.

BME 891. Biomedical Engineering Innovation Seminar. 1-3 Credits.
This course is for students interested in research that originates from a
clinical need, is developed in the laboratory and is then implemented
clinically. Seminars by healthcare professionals emphasize clinical needs.
Students follow the biodesign innovation process toward creation of
biotechnologies and devices that address needs.

BME 895. Special Topics in Biomedical Engineering. 1-3 Credits.
Special courses covering selected graduate-level topics in biomedical
engineering.

BME 897. Independent Study. 1-3 Credits.
This course allows students to develop specialized expertise by independent
study (supervised by a faculty member). Prerequisites: departmental
approval.

BME 899. PHD Dissertation Research. 1-9 Credits.
1-9 credits. Directed research for the doctoral dissertation.

BME 999. Doctoral Graduate Credit. 1 Credit.
This course is a pass/fail course doctoral students may take to maintain
active status after successfully passing the candidacy examination. All
doctoral students are required to be registered for at least one graduate credit
hour every semester until their graduation.