Department of Mechanical and Aerospace Engineering

Overview
The Department of Mechanical and Aerospace Engineering strives to provide the highest quality engineering education at the undergraduate and graduate levels, to engage in scholarly research at the forefront of mechanical and aerospace engineering, and to serve the professions of mechanical and aerospace engineering. Graduate degrees in mechanical engineering and aerospace engineering include the Master of Engineering, Master of Science, Doctor of Philosophy, and Doctor of Engineering degrees and are designed to prepare graduates for professional practice in teaching, research and development, design, and consulting. Graduates are prepared for challenging and rewarding employment in high-technology industries, research organizations, consulting firms and government agencies. These programs are also designed to serve both full-time and part-time graduate students. The department is closely associated with area industries, consulting firms, government agencies and research laboratories, which add relevance to the graduate engineering curricula, creating a stimulating environment for the pursuit of graduate studies. The students also benefit from the University’s affiliation with NASA Langley Research Center, the Jefferson National Laboratory, the National Institute of Aerospace, and the Virginia Modeling Analysis and Simulation Center. All degree programs offered by the department can be utilized as components within the linked Baccalaureate-Master’s and Baccalaureate-Doctoral degree programs offered through the Batten College of Engineering and Technology. For additional information about the educational and research opportunities available please visit our website at http://www.odu.edu/mae.

List of Degrees and Certificates:
- Master of Engineering - Mechanical Engineering
- Master of Science, Engineering - Mechanical Engineering
- Master of Engineering - Aerospace Engineering
- Master of Science, Engineering - Aerospace Engineering
- Doctor of Philosophy, Engineering - Mechanical Engineering
- Doctor of Philosophy, Engineering - Aerospace Engineering
- Doctor of Engineering - Mechanical Engineering
- Doctor of Engineering - Aerospace Engineering
- Graduate Certificate - Naval Architecture and Marine Engineering

Master’s Admission Information
To qualify as a candidate for a Master of Science or a Master of Engineering program, applicants must meet the general University admission requirements and have completed undergraduate-level coursework that includes subject matter equivalent to a bachelor’s degree in mechanical engineering, aerospace engineering, engineering mechanics, or a closely related discipline such as physics or mathematics. An applicant with an overall grade point average (GPA) of 3.0 and a GPA in the major of 3.0 (4.0 scale) is eligible for regular admission. Applicants with a GPA below 3.0 may be eligible for provisional admission. Students are typically required to submit their Graduate Record Examination (GRE) scores, although the Graduate Program Director (GPD) may waive the GRE requirement for applicants with excellent academic credentials. For those applicants with non-engineering degrees, or with engineering degrees other than mechanical engineering, aerospace engineering, or engineering mechanics, successful completion of remedial graduate coursework may be required as a condition of admission. The Master of Science programs require a minimum of 24 semester credit hours of coursework beyond the bachelor’s degree with at least a B (3.0) average and a minimum of 6 semester credit hours of thesis research. The Master of Engineering Program requires a minimum of 30 semester credit hours of course work with at least a B (3.0) average.

Leveling Requirements
Students from disciplines other than Mechanical and Aerospace Engineering are required to complete a number of leveling courses depending on their undergraduate degrees:

Holders of a B.S. degree in Mechanical Engineering Technology (MET) from an ABET accredited institution must complete three of the following leveling courses per recommendation of the Graduate Program Director:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 307</td>
<td>Ordinary Differential Equations</td>
</tr>
<tr>
<td>MAE 303</td>
<td>Mechanics of Fluids</td>
</tr>
<tr>
<td>MAE 312</td>
<td>Thermodynamics II</td>
</tr>
<tr>
<td>MAE 340</td>
<td>Computational Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MAE 436</td>
<td>Dynamic Systems and Control</td>
</tr>
</tbody>
</table>

If applicants already have a minor in Mechanical Engineering or Aerospace Engineering, then no leveling courses are necessary. The selected courses are subject to satisfying the prerequisites listed in the catalog.

Holders of a B.S. degree in Physics or Mathematics from an ABET accredited institution must complete three of the following leveling courses per recommendation of the Graduate Program Director:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 303</td>
<td>Mechanics of Fluids</td>
</tr>
<tr>
<td>MAE 311</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td>MAE 315</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>MAE 332</td>
<td>Mechanical Engineering Design I</td>
</tr>
<tr>
<td>MAE 340</td>
<td>Computational Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MAE 433</td>
<td>Mechanical Engineering Design II</td>
</tr>
</tbody>
</table>

If applicants already have a minor in Mechanical Engineering or Aerospace Engineering, then no leveling courses are necessary. The selected courses are subject to satisfying the prerequisites listed in the catalog.

Master’s Program Requirements
Students pursuing traditional Mechanical or Aerospace programs are required to take:

Core Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 601</td>
<td>Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>or MAE 608</td>
<td>Applied Mathematics for Engineers</td>
<td></td>
</tr>
<tr>
<td>or MATH 691</td>
<td>Engineering Analysis I</td>
<td></td>
</tr>
</tbody>
</table>

Select three from the following: 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 602</td>
<td>Fluid Dynamics and Aerodynamics</td>
</tr>
<tr>
<td>MAE 603</td>
<td>Advanced Mechanics of Solids</td>
</tr>
<tr>
<td>MAE 604</td>
<td>Analytical Dynamics</td>
</tr>
<tr>
<td>MAE 605</td>
<td>Advanced Classical Thermodynamics</td>
</tr>
<tr>
<td>MAE 607</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>MAE 620</td>
<td>Heat Transfer I</td>
</tr>
<tr>
<td>MAE 640</td>
<td>Modern Control Theory</td>
</tr>
<tr>
<td>MAE 672</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>MAE 682</td>
<td>Concurrent Engineering</td>
</tr>
</tbody>
</table>

Total Hours 12

In all programs, a maximum of 6 semester credit hours may be derived from 500-level courses.
Master of Engineering (Non-Thesis) Programs

The Master of Engineering is a non-research degree. The 30 semester credit hours is thus met entirely by course work. During their final semester, students are required to either pass a comprehensive examination covering their course work or successfully complete a 3 hour project course, which includes written and oral presentations. The master’s comprehensive examination is administered by the Graduate Program Director, and the rules for the comprehensive exam are identical to the Preliminary Diagnostic Examination for the Ph.D. program.

Master of Science (Thesis) Programs

The Master of Science degree is a research degree requiring a written thesis. The thesis constitutes 6 semester credit hours within the 30 semester credit hour requirement. Students are given a verbal examination, administered as the student’s thesis defense, under the direction of the faculty advisor with support from the Thesis Advisory Committee. The examination consists of two parts, a student presentation of their thesis research followed by a closed session where the Thesis Advisory Committee further questions the student. The committee concentrates on research presented in both oral and written formats, but may expand questioning to include related course work. The thesis should be formatted with guidelines established by the College.

Doctor of Philosophy Programs

The Doctor of Philosophy programs in Mechanical or Aerospace Engineering are advanced research degrees requiring a written dissertation offering new and unique contributions of a fundamental nature. Graduates are prepared for leadership roles in the many facets of engineering including teaching, research and development, design, and consulting. Doctoral students may select specializations in such technical areas as:

- aerodynamics and fluids
- thermodynamics and energy
- dynamics and controls
- materials and structures
- design and manufacturing

Students are also encouraged to select complementary courses in other engineering or science disciplines. The University’s close associations with area industries, consulting firms, government agencies, and research laboratories create a stimulating environment for the pursuit of graduate studies.

Doctor of Philosophy Admission Requirements

To qualify for admission to a Doctor of Philosophy degree in Mechanical or Aerospace Engineering, a student must have earned a master’s degree from an accredited institution of higher learning in engineering, physics, or mathematics, including graduate-level coursework equivalent to the corresponding master’s program in Mechanical and Aerospace Engineering. Applicants with an overall grade point average (GPA) of 3.5 on a 4.0 scale at the master’s level are eligible for regular admission. Applicants with a GPA below 3.5 who present evidence and potential for improvement may be eligible for provisional admission. Students are typically required to submit their Graduate Record Examination (GRE) scores, although the Graduate Program Director (GPD) may waive the GRE requirement for applicants with excellent academic credentials.

Doctor of Philosophy Degree Requirements

A minimum of 24 credit hours of course work beyond the master’s degree and a minimum of 24 semester credit hours of dissertation research must be included in the doctoral degree program. At least 60% of the course work for the doctoral degree should be at the 800-level and the student should maintain at least a B (3.0) average. All doctoral students should satisfy either a foreign language or research skill requirement.

Preliminary Diagnostic Examination

Ph.D. students must take the diagnostic exam no later than the end of their first academic year. Diagnostic exams are scheduled annually in October and February and the exam dates are announced by the Graduate Program Director (GPD). Students who received their Master of Science degrees from ODU with a GPA of 3.5 or above are exempt from the diagnostic exam.

Students must fill the Ph.D. Diagnostic Exam form to notify the GPD of their desire to take the diagnostic exam. The form must be approved by the student’s advisor. The diagnostic exam is a three hour long written exam containing four equally weighted questions from the core courses. It is conducted without any reference books or notes. Use of electronic devices with internet connection is not permitted. Only non-programmable scientific calculators are allowed. The questions might contain useful formulae to guide the students. Diagnostic exam questions will be prepared and graded by the faculty who taught these courses in the past five years. Students must pass each core topic area with a minimum passing grade of B. Students who pass at least two of the four subject areas in their first attempt can take the exam for a second time, where they will be tested on the failed areas. Students who fail their diagnostic exam can consider pursuing other MAE degrees. Students who fail their first attempt do not receive priority for departmental support as graduate teaching assistants or graders until they pass their diagnostic exam. However support as a graduate research assistant is within the discretion of the student's advisor. Part time or special status students attending ODU for joint foreign-institution/ODU degrees must also take their diagnostic exam within the first year of their Ph.D. studies at ODU.

Candidacy Examination

The candidacy exam is taken once the students finish their course work. The exam consists of written and oral parts. Written part of the exam can consist of a critical review report on a subject area determined by the student's advising committee. Written candidacy exam will be reviewed by the student's committee members for its technical content as well as for evaluation of the student's writing proficiency and research skills. Oral part of the candidacy exam is based on the defense of the written part, and will include extensive examination of the student's fundamental knowledge in his/her research area.

Dissertation Proposal

After the student passes the written and oral candidacy examinations, for advancement to candidacy, he/she must pass the dissertation proposal stage, which is an oral presentation of the student's work containing literature survey and preliminary results sections to demonstrate feasibility of the proposed work.

Dissertation

Ph.D. candidates are expected to work with their dissertation advisors to form their Dissertation Committees. A Dissertation Committee should be composed of individuals with significant knowledge related to the candidate's dissertation research. The majority of whom must be full-time faculty members of the department.

Ph.D. candidates must submit their written dissertation to the committee members at least two weeks prior to the dissertation defense. The dissertation should be formatted in accordance with guidelines established by the college.

The dissertation defense consists of two parts; an open presentation to the general public and a closed examination conducted by the dissertation committee. The dissertation must be approved by the majority of the dissertation committee and must constitute a significant original contribution to the field. Students are permitted only two attempts to successfully complete the dissertation defense.

Doctor of Engineering

The Department offers a Doctor of Engineering (D.Eng.) program with concentrations in Mechanical Engineering or Aerospace Engineering in accordance with the D.Eng. program criteria and requirements specified for the Batten College of Engineering and Technology in this catalog.
Graduate Certificate - Naval Architecture and Marine Engineering

In order to provide the opportunity for practicing engineers to further their knowledge and to become more competent in the fields of Naval Architecture and Marine Engineering, the Department of Mechanical and Aerospace Engineering offers a non-degree graduate level certificate program in Naval Architecture and Marine Engineering. Admission to the program requires a Bachelor of Science degree (or equivalent) in Mechanical Engineering, Aerospace Engineering, Naval Architecture and Marine Engineering, or a related field. The students must complete four 3-credit graduate-level courses to earn a certificate. The certificate program credits will be transferable to the Master’s degree programs in Mechanical and Aerospace Engineering. The specified courses are indicated in the Batten College of Engineering and Technology pages in this catalog.

Graduate Course Portfolio

Core Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 601</td>
<td>Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 602</td>
<td>Fluid Dynamics and Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 603</td>
<td>Advanced Mechanics of Solids</td>
<td>3</td>
</tr>
<tr>
<td>MAE 604</td>
<td>Analytical Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 605</td>
<td>Advanced Classical Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 607</td>
<td>Continuum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 620</td>
<td>Heat Transfer I</td>
<td>3</td>
</tr>
<tr>
<td>MAE 640</td>
<td>Modern Control Theory</td>
<td>3</td>
</tr>
<tr>
<td>MAE 672</td>
<td>Design of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>MAE 682</td>
<td>Concurrent Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Aerodynamics and Fluids Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 503</td>
<td>Flight Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 506</td>
<td>Flight Vehicle Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 507</td>
<td>Ground Vehicle Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 517</td>
<td>Propulsion Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 557</td>
<td>Motorsports Vehicle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 560</td>
<td>Introduction to Space Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAE 567</td>
<td>Racecar Performance</td>
<td>3</td>
</tr>
<tr>
<td>MAE 710/810</td>
<td>Real-Time Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 711/811</td>
<td>Supersonic Flow</td>
<td>3</td>
</tr>
<tr>
<td>MAE 712/812</td>
<td>Hypersonic Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 713/813</td>
<td>Experimental Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 714/814</td>
<td>Turbulent Flow</td>
<td>3</td>
</tr>
<tr>
<td>MAE 715/815</td>
<td>Aerodynamic Flow Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 716/816</td>
<td>Boundary Layer Theory</td>
<td>3</td>
</tr>
<tr>
<td>MAE 718/818</td>
<td>Computational Fluid Dynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MAE 772/872</td>
<td>Aerodynamics Test Facilities</td>
<td>3</td>
</tr>
</tbody>
</table>

Thermodynamics and Energy Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 511</td>
<td>Mechanical Engineering Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 512</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>MAE 513</td>
<td>Introduction to Gas Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 720/820</td>
<td>Heat Transfer II</td>
<td>3</td>
</tr>
<tr>
<td>MAE 721/821</td>
<td>Fundamentals of Combustion</td>
<td>3</td>
</tr>
<tr>
<td>MAE 722/822</td>
<td>Theory and Design of Turbomachines</td>
<td>3</td>
</tr>
<tr>
<td>MAE 723/823</td>
<td>Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAE 724/824</td>
<td>Energy Utilization and Conservation</td>
<td>3</td>
</tr>
</tbody>
</table>

Materials and Structures Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 522</td>
<td>Modern Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 730/830</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MAE 731/831</td>
<td>Mechanics of Composite Structures</td>
<td>3</td>
</tr>
<tr>
<td>MAE 733/833</td>
<td>Nonlinear Aerospace Structures</td>
<td>3</td>
</tr>
<tr>
<td>MAE 734/834</td>
<td>Theory of Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MAE 735/835</td>
<td>Experimental Structural Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 750/850</td>
<td>Nanoscale Mechanical and Structural Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 751/851</td>
<td>Fatigue and Fracture</td>
<td>3</td>
</tr>
<tr>
<td>MAE 752/852</td>
<td>Mechanical Behavior of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 753/853</td>
<td>Composite Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Dynamics and Controls Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 504</td>
<td>Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MAE 531</td>
<td>Mechanisms Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>MAE 538</td>
<td>Applied Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 740/840</td>
<td>Autonomous and Robotic Systems Analysis and Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 741/841</td>
<td>Optimal Control Theory</td>
<td>3</td>
</tr>
<tr>
<td>MAE 742/842</td>
<td>Multibody Dynamics: Theories and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MAE 743/843</td>
<td>Kinematic Synthesis of Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>MAE 744/844</td>
<td>Atmospheric Flight Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 745/845</td>
<td>Space Flight Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 746/846</td>
<td>Advanced Control Methodologies</td>
<td>3</td>
</tr>
<tr>
<td>MAE 747/847</td>
<td>Aerospace Vehicle Performance</td>
<td>3</td>
</tr>
</tbody>
</table>

Design/Manufacturing Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 780/880</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MAE 781/881</td>
<td>Advanced Design</td>
<td>3</td>
</tr>
<tr>
<td>MAE 782/882</td>
<td>Engineering Software for Computer-Aided Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>MAE 783/883</td>
<td>Robots and Manufacturing Automation</td>
<td>3</td>
</tr>
<tr>
<td>MAE 784/884</td>
<td>Computer Integrated Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MAE 785/885</td>
<td>Advanced Manufacturing Technology</td>
<td>3</td>
</tr>
<tr>
<td>MAE 787/887</td>
<td>Life Cycle Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAE 788/888</td>
<td>Computational Intelligence for Engineering Design Optimization Problems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 789/889</td>
<td>Engineering Design with Uncertainties</td>
<td>3</td>
</tr>
</tbody>
</table>

MECHANICAL AND AEROSPACE ENGINEERING Courses

MAE 503. Flight Mechanics. 3 Credits.
Aircraft concepts including performance prediction and optimization, flight and maneuver envelopes, and steady flight performance. Additional topics: longitudinal static stability and trim; aircraft dynamics; development, separation and solution of aircraft equations of motion; natural modes; dynamic stability; sensors and actuators; and design of stability augmentation and autopilot systems. Prerequisites: MAE 406, MAE 436.

MAE 504. Vibrations. 3 Credits.
Free and forced vibrations of undamped and damped, single-degree of freedom, multi-degree of freedom, and continuous systems. Exact and approximate methods to find natural frequencies. Prerequisites: A grade of C or better in MAE 205, a grade of C or better in MAE 220; MAE 340 and MATH 312.
MAE 506. Flight Vehicle Aerodynamics. 3 Credits.
Inviscid flow concepts including: Euler equations, stream function, velocity potential, singularities, vorticity and circulation laws. Viscous flow topics including boundary layers separation, and turbulent flow. In addition, external flows, lift and drag, thin airfoil theory, finite wing theory and airfoil design will be discussed. Prerequisites: A grade of C or better in MAE 303; MAE 312 and MAE 340.

MAE 507. Ground Vehicle Aerodynamics. 3 Credits.
Review of basic fluid mechanics of the incompressible flow of air. Introduction to bluff body aerodynamics, production and performance (race car) automotive aerodynamics, as well as truck and bus aerodynamics. Discussion of experimental and computational methods for evaluating vehicle aerodynamic performance. Optimization of high performance vehicle design for low drag and/or high downforce and the facilities and techniques required. Introduction to the aerodynamics of other surface vehicles such as sailboats and trains. Lecture and wind tunnel experiments. Prerequisites: A grade of C or better in MAE 303 or MET 330 or CEE 330.

MAE 511. Mechanical Engineering Power Systems Theory and Design. 3 Credits.
Thermodynamic properties of gases and vapors relating to power generating devices, work-energy relations, combustion, and heat exchangers. Performance analyses and design concepts of gas turbines, internal combustion engines, steam power plants and heat exchanger equipment from theoretical and applied viewpoints. Prerequisites: MAE 312 and MAE 315.

MAE 512. Environmental Control. 3 Credits.
Engineering principles as applied to the analysis and design of systems for automatically controlling man or machine environments. Course encompasses fundamentals of heating, ventilating, air conditioning, refrigeration, cryogenics, and design of building energy systems. Prerequisites: MAE 312 and MAE 315.

MAE 513. Energy Conversion. 3 Credits.
Introduction of relevant kinetic theory, solid state, and thermodynamic principles; operation and analysis of thermoelectric, photovoltaic, thermionic, magnetohydrodynamic devices, fuel cell, isotopic, and solar power generators. Course seeks to define engineering limits of converter efficiency and other performance criteria. Prerequisites: MAE 312.

MAE 514. Introduction to Gas Dynamics. 3 Credits.
One-dimensional compressible flow considering isentropic flow, normal shocks, flow in constant area ducts with friction, flow in ducts with heating and cooling, oblique shocks, Prandtl-Meyer expansions, shock-expansion theory, flow around diamond shaped airfoils, and wind tunnel mechanics. Prerequisites: A grade of C or better in MAE 303 and a grade of C or better in MAE 311.

MAE 516. Introduction to Solar Energy Engineering. 3 Credits.
Prerequisites: MAE 315. Basic solar radiation processes, engineering analysis of solar collectors, energy storage methods, system design and simulation, applications to heating, cooling, and power generation.

MAE 517. Propulsion Systems. 3 Credits.
Basic principles of design, operation and performance of propulsion systems - including turbojet, turboprop, turbofan, and ramjet engines. Introduction to chemical rockets, ion and plasma thrusters. Prerequisite: MAE 312 or MAE 414.

MAE 520. Aerospace Structures. 3 Credits.
Analysis of aircraft and space vehicle structural components. Effects of bending, torsion and shear on typical aerospace structural components, statically indeterminate beams, shear center and shear flow. Introduction to typical aerospace structures. Introduction to composite structures. Prerequisites: MAE 332.

MAE 522. Modern Engineering Materials. 3 Credits.
Limitations of conventional materials; inter-relationship among materials, design and processing, material selection criteria and procedures; strengthening mechanisms in metals; superelasticity; shape memory effect, amorphous metals; structure-property relationship in polymers; polymers crystallinity; thermoplastic and thermosets; high-temperature restraint polymers; ceramics; toughening mechanisms in ceramics. Prerequisites: MAE 201, MAE 203, and a grade of C or better in MAE 220; MAE 332.

MAE 531. Mechanisms Analysis and Design. 3 Credits.
Basic relations necessary for analysis of plane motion mechanisms, numerical and analytical solutions for some of the basic mechanisms, methods of calculating rolling and sliding velocities and accelerations of contacting bodies, cams, and gears. Prerequisites: A grade of C or better in MAE 205; MAE 323 and MATH 312.

MAE 538. Applied Analog and Digital Control. 3 Credits.
Computer-aided analysis and design of practical control systems. Introduction to state-space, digital signal processing and digital control. Laboratory sessions on aliasing, analog, system identification, and real-time control. Prerequisites: MAE 436.

MAE 540. Introduction to Finite Element Analysis. 3 Credits.
Basic concepts of finite-element method, method of weighted residuals, interpolation functions, numerical implementation of finite-element method, applications to engineering problems such as beam deflection, heat conduction, and plate elastic problems. Prerequisites: MAE 340.

MAE 550. Principles of Naval Architecture. 3 Credits.
Basic principles of naval architecture related to ship geometry, stability, strength, resistance, propulsion, vibration and motions in waves and controllability. Prerequisites: MATH 212.

MAE 557. Motorsports Vehicle Dynamics. 3 Credits.
Basic mechanics governing vehicle dynamic performance. Analytical methods in vehicle dynamics. Laboratory consists of various vehicle dynamics tests on model vehicles and full-size racecars. Prerequisites: A grade of C or better in MAE 205 or MET 310.

MAE 560. Introduction to Space Systems Engineering. 3 Credits.
Introduction to spacecraft systems starting from mission design and space environment considerations and proceeding through propulsion, altitude control, spacecraft structural design, thermal control, power and communications for spacecraft. Prerequisites: MATH 307 and PHYS 232N.

MAE 567. Racecar Performance. 3 Credits.
On-track performance of typical racecars (Legends and Baby Grand) to demonstrate and evaluate the interplay between vehicle aerodynamics, suspension system geometry adjustments, tire selection and operating pressure on overall racecar performance and handling. Laboratory testing via on-board instrumentation during skid pad and road course evaluation; computer simulation to investigate various car set-ups. Prerequisites: MAE 303 or MET 330 and MAE 205 or MET 310.

MAE 577. High Performance Piston Engines. 3 Credits.
A study of the fundamental principles and performance characteristics of spark ignition and diesel internal combustion engines. Overview of engine types and their operation, engine design and operating parameters; ideal and semi-empirical models of engine cycles; combustion, fluid flow and thermal considerations in engine design and performance. Laboratory evaluation of engine performance using flow and dynamometer systems. Prerequisite: MAE 312, MAE 315 or MET 300, MET 350.

MAE 595. Topics in Mechanical and Aerospace Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on recent developments in mechanical and aerospace engineering or engineering mechanics. (offered fall, spring, summer) Prerequisites: Senior standing; Permission of the chair is required.

MAE 597. Independent Study in Mechanical and Aerospace Engineering. 1-3 Credits.
Individual analytical, computational, and/or experimental study in an area selected by the student. Supervised and approved by the advisor. Prerequisites: Senior standing; permission of the chair is required.

MAE 601. Engineering Mathematics. 3 Credits.
Applications of linear algebra, ordinary and partial differential equations, and complex variables to engineering problems.
MAE 602. Fluid Dynamics and Aerodynamics. 3 Credits.
Prerequisites: MAE 601 or MATH 691. Conservation laws for viscous and inviscid flows. Boundary conditions; analytical and numerical solution of viscous flow problems; boundary-layer theory; 2 and 3-dimensional potential flows; applications to airfoils, wings, and internal flows; introduction to turbulence.

MAE 603. Advanced Mechanics of Solids. 3 Credits.
Stress, strain, equilibrium for deformable solids; material behavior of elasticity, hyperelasticity, plasticity and viscoelasticity; failure criteria, fracture; thermal effect; energy methods and their applications to bars and beams for static, stability and dynamic problems.

MAE 604. Analytical Dynamics. 3 Credits.

MAE 605. Advanced Classical Thermodynamics. 3 Credits.
Prerequisites: MAE 601 or MATH 691. Rigorous development of the macroscopic theory of thermodynamics; structural basis for equations of state and general properties of matter; phase and chemical equilibria.

MAE 607. Continuum Mechanics. 3 Credits.
Indicial notations and tensor calculus; strain and stress tensors, rate of deformation tensor, Eulerian and Lagrangian descriptions, conservation principles, constitutive formulations for elastic solids and viscous fluids, formulation of fluid mechanics and solid mechanics problems. Simple applications. Pre- or corequisite: MATH 691 or MAE 601.

MAE 608. Applied Mathematics for Engineers. 3 Credits.

MAE 620. Heat Transfer I. 3 Credits.
Aspects of conduction, convection and radiation heat transfer, including governing equations, boundary layer flows, analytical and numerical solutions to one-, two-, and three-dimensional problems. Prerequisites: MAE 602.

MAE 640. Modern Control Theory. 3 Credits.

MAE 667. Cooperative Education in Mechanical and Aerospace Engineering. 1-3 Credits.
Student participation for credit based on academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and the Cooperative Education program prior to the semester in which the work experience is to take place. Prerequisites: Approval by Department and Career Development Services.

MAE 668. Internship in Mechanical and Aerospace Engineering. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students an opportunity to gain short duration career-related experience. Prerequisites: Approval by Department and Career Development Services.

MAE 690. Mechanical and Aerospace Engineering Seminar. 1 Credit.
Regular tutorials on recent topics of interest in mechanical and aerospace engineering and engineering mechanics.

MAE 695. Topics in Mechanical and Aerospace Engineering. 3 Credits.
Special topics of interest with emphasis placed on recent developments in mechanical and aerospace engineering or engineering mechanics.

MAE 696. Experimental Research Project. 3 Credits.
An independent laboratory experience in the area of either aerodynamics, structural dynamics or applied automatic control. Results will be reported in a format and quality similar to a technical conference paper.

MAE 697. Independent Study in Mechanical and Aerospace Engineering. 3 Credits.
Individual analytical, computational and/or experimental study in an area selected by the student. Supervised and approved by the advisor.

MAE 698. Master's Project in Mechanical and Aerospace Engineering. 1-3 Credits.
Individual project, investigation under the direction of the student's major professor.

MAE 699. Thesis Research in Mechanical and Aerospace Engineering. 1-6 Credits.
Thesis research in mechanical and aerospace engineering or engineering mechanics leading to the Master of Science degree. Prerequisites: instructor approval required.

MAE 706. Real-Time Signals and Systems. 3 Credits.
Introduction to random and harmonic processes, fast Fourier transforms, digital filters, digital signal processing methods, as well as sensors and transducers. Review of the theory and practice of data acquisition. Modeling of linear, lumped and distributed parameter systems. Use of LabVIEW and MATLAB/Simulink for real-time control and dynamic system simulations. Applications to modal analysis, experimental aerodynamics, and real-time control of electro-mechanical systems.

MAE 710. Supersonic Flow. 3 Credits.
This course will examine governing equations for supersonic flow, including full potential equations, small disturbance theory, hodographs, and method of characteristics. It will also serve as an introduction to three-dimensional flows, compressible boundary layer flows, internal flows in nozzles and diffusers, airfoil flows, slender bodies of revolution flows, conical flows, and wing flows. Prerequisites: MAE 514 and MAE 602.

MAE 711. Hypersonic Aerodynamics. 3 Credits.
Prerequisites: MAE 610. General consideration of hypersonic flow and similarity principles, hypersonic flow past slender bodies with sharp and blunt leading edges. Hypersonic blunt-body flow. Real gas, viscous and low density effects, and consideration of nonequilibrium phenomena in hypersonic flows.
MAE 712. Experimental Aerodynamics. 3 Credits.
This course will examine techniques for static and dynamic measurement of pressure, temperature, and velocity. Experiment control and statistical treatment of data will be discussed, as will probe methods, including multi-hole pressure probes and hot-wire anemometers, and non-intrusive methods, including laser Doppler velocimetry and other optical methods. Surface and stream flow visualization and surface measurements will also be covered. Prerequisites: MAE 602 and MAE 610.

MAE 713. Turbulent Flow. 3 Credits.

MAE 714. Aerodynamic Flow Control. 3 Credits.
Prerequisites: MAE 602 and MAE 610. Introduction and definitions, goals, passive and active control methodologies and techniques. Flow separation control, drag reduction control techniques, flow transition control. Micro-electrical-mechanical systems (MEMS) control, future challenges.

MAE 715. Boundary Layer Theory. 3 Credits.
Prerequisites: MAE 602. Boundary layer equations; method of matched asymptotic expansions; body oriented coordinates, finite-difference solutions; separations, wake and jet flows; thermal and compressible boundary layers, transformations and finite-difference solutions, unsteady boundary layers. Introduction to hydrodynamic stability and turbulence.

MAE 716. Computational Fluid Dynamics I. 3 Credits.
This course will cover the following topics: classification of single partial differential equations; finite difference methods; stability analysis, including convergence, consistency, and efficiency; basics of finite volume methods; model equations of hyperbolic, parabolic and elliptic type; and explicit and implicit schemes, central and upwind schemes, and weak solutions of quasilinear hyperbolic equations. Prerequisites: MAE 601 or MATH 691.

MAE 718. Aerospace Test Facilities. 3 Credits.
A comprehensive examination of aerodynamic test facilities for use in subsonic, transonic, supersonic and hypersonic flow regimes. Aspects of wind tunnel design and operation will be discussed, as will flow quality and wall and support interferences. Advanced concepts including cryogenic wind tunnels, adaptive wall test sections and magnetic suspension will be examined, in addition to dynamic testing. There will be a review of flight test methods, including extraction of aerodynamic parameters from flight test data, a review of engine test facilities, and a review of ground test facilities for space structures and other space systems. Prerequisites: Permission of the instructor.

MAE 720. Heat Transfer II. 3 Credits.
Prerequisites: MAE 620. Aspects of conduction, convection and radiation heat transfer, including governing equations, boundary layer flows, analytical and numerical solutions to one-, two- and three-dimensional problems.

MAE 721. Fundamentals of Combustion. 3 Credits.
Prerequisites: MAE 602 and MAE 610. Chemical equilibrium in reacting systems, chemical kinetics of single and multi-step chemical reaction systems, conservation equations for multicomponent reacting systems; Shvab-Zeldovich formulation, detonation and deflagration waves, flammability limits; premixed laminar flames, gaseous diffusion flames; application to engine processes.

MAE 722. Theory and Design of Turbomachines. 3 Credits.
This course will examine real cycles, fluid motion in turbomachines, the theory of diffusers and nozzles, fluid-rotor energy transfer, radial equilibrium, transonic stages, and combustion chambers. Other types of turbines will also be discussed including axial and centrifugal turbines. Performance and design criteria will also be examined, as well as cavitation and two-phase flows. Prerequisites: MAE 514 and MAE 602.

MAE 723. Nuclear Engineering. 3 Credits.
This course will consider nuclear power plant systems, and will introduce power reactor control kinetic behavior including safety coefficients, accumulative poisons, and temperature control parameters. It will also examine primary and secondary plant as a transient system.

MAE 724. Energy Utilization and Conservation. 3 Credits.
This course provides an overview of the scope of efficient energy utilization in industrial, commercial, transportation, and power generation fields. It introduces power plant waste-heat utilization, district heating, combined gas and steam cycle, organic fluid-bottoming cycle, and total energy concept for residential and commercial buildings. In addition, it also examines system management, on-line computer evaluation, and energy analysis. Prerequisites: Permission of instructor.

MAE 730. Finite Element Analysis. 3 Credits.
This course provides an understanding of the finite element method (FEM) as derived from an integral formulation perspective. It demonstrates the solutions of (1-D and 2-D) continuum mechanics problems such as solid mechanics, fluid mechanics and heat transfer. It also provides insight into the theoretical formulation and numerical implementation of finite element methods.

MAE 731. Mechanics of Composite Structures. 3 Credits.

MAE 733. Nonlinear Aerospace Structures. 3 Credits.
Prerequisites: MAE 633 and MAE 634. Classical and finite element analysis methods for nonlinear aerospace structures of beams, plates, and shallow shells. Application to problems of large bending deflection, thermal post-buckling, large amplitude free vibration, nonlinear panel flutter, and nonlinear random response.

MAE 734. Theory of Vibrations. 3 Credits.
This course will introduce applied modal analysis, modes of vibration of discrete systems, modal coordinates, transfer functions in frequency domain, modes of vibration of continuous systems, and approximate systems response. It will also examine Finite Elements methods and nonlinear vibrations. Applications will be extended to rods, beams, plates and shells. Prerequisites: MAE 504 and MAE 601 or MATH 691.

MAE 735. Experimental Structural Dynamics. 3 Credits.
This course will examine experimental techniques and methods for structural dynamics and modal analysis. It will introduce a variety of instruments including electrodynamic shakers, impact hammers, accelerometers, laser vibrometers, signal analyzers, signal filters, and force transducers. Time and frequency domain data acquisition, assessment, and post-processing will be studied. The development of mathematical models from experimental data will also be conducted. Prerequisites: MAE 634.

MAE 740. Autonomous and Robotic Systems Analysis and Control. 3 Credits.
Kinematics, dynamics and control of complex non-linear electro-mechanical systems, particularly robotic manipulators.

MAE 741. Optimal Control Theory. 3 Credits.
Prerequisites: MAE 640. Parameter optimization, optimization problem for dynamic systems with terminal and path constraints; optimal feedback control with and without the presence of uncertainty; nonlinear optimal control system.

MAE 742. MultiBody Dynamics: Theories and Applications. 3 Credits.
Prerequisites: Permission of instructor. Basic theories are presented for formulation of equations of kinematics and dynamics of systems made of interconnected bodies. Topics include constrained motion, principle of virtual work and constrained dynamics. Examples cover robotic motion and biomechanics applications such as human locomotion.
MAE 743. Kinematic Synthesis of Mechanisms. 3 Credits.
Prerequisites: Permission of instructor. Classification of mechanisms; type and number synthesis, application of graph theory, expert systems for synthesis; introduction to dimensional synthesis via path and function generation; finite displacement theory including concept of poles, circlepoint, and centerpoint curves; structural error minimization using Chebychev's approximation; optimization approaches, current applications to robot manipulators, robot hands, space structures, and combustion engines.

MAE 744. Atmospheric Flight Dynamics and Control. 3 Credits.
Prerequisites: MAE 403 or MAE 503 and MAE 604. Principles governing the dynamics and control of vehicles in atmospheric flight. Equations of motion development and solution including inertial/gravitational/ aerodynamic/propulsive loads, linear longitudinal and lateral-directional motions, and nonlinear trim and simulation. Flight control system design and analysis incorporating flying quality requirements, linear conventional/ contemporary and frequency/time domain techniques for control and guidance functions, validation with nonlinear simulation, gain scheduling.

MAE 745. Space Flight Dynamics and Control. 3 Credits.
Prerequisites: MAE 604 and MAE 640. Principles governing the dynamics and control of vehicles in space flight. Equations of motion development and solution including inertial/gravitational/aerodynamic/propulsive loads, decoupled translational and attitude motions. Orbital mechanics including elements, initial-value propagation, adjustments/transfers, Lambert boundary-value problem, perturbations, and nonlinear simulation. Attitude dynamics including torque free, gravity moment, axisymmetric/unsymmetric vehicles, and dual spinners. Flight control system design and analysis including impulsive velocities, finite burns, Lambert targeting, linear designing/momentum wheels, and nonlinear phase-plane design using thrusters.

MAE 746. Advanced Control Methodologies. 3 Credits.
Prerequisites: MAE 640. Review of multivariable dynamic math models including state space, transfer function, and matrix fractions. Multivariable design criteria including stability, performance, and robustness. Theory and application of multivariable control design techniques including LQR/LQG/ LTR, H-infinity, Eigenspace Assignment and other advanced methods.

MAE 747. Aerospace Vehicle Performance. 3 Credits.
This course will study the flight performance of aerospace vehicles, including a review of aerodynamic and propulsion characteristics. Range, flight and maneuver envelopes for vehicles in atmospheric flight will also be examined. It will introduce various methods of design for trajectory optimization, including launch vehicles. An open-ended, design-oriented project will be required. Prerequisites: MAE 602 and MAE 514 or MAE 610.

MAE 748. Flight Control Actuators and Sensors. 3 Credits.
This course will provide an overview of the governing principles and operations of actuator and sensor hardware used in aircraft and spacecraft flight control systems. Hydraulic, electro-hydraulic and electric actuators will be examined, as well as control jets and momentum wheels, accelerometers, and rate gyros. Other topics include air-data systems, inertial navigation systems and satellite navigation systems. The course will also examine dynamic model development, analysis and simulation, nonlinear hardware characteristics, and the influence on closed-loop vehicle behavior. Prerequisites: MAE 503, MAE 538, and MAE 604.

MAE 750. Nanoscale Mechanical and Structural Properties of Materials. 3 Credits.
Elastic and plastic properties of nanoscale materials, strain gradient dislocation plasticity, nanoindentation and nanoindentation creep, thin film mechanical and structural properties, kinetic-based investigations of hardening mechanisms in nanolayer composites.

MAE 751. Fatigue and Fracture. 3 Credits.
Divided into areas of fatigue and fracture; stress-controlled and strain-controlled fatigue; effect of mean stresses, notches, etc.; multiaxial stresses; variable amplitude loading; ductile and brittle fracture; linear elastic fracture mechanics; crack-tip plasticity; fracture testing; applications to fatigue life estimation. Requires permission of the instructor.

MAE 752. Mechanical Behavior of Materials. 3 Credits.
This course will examine the macroscopic behavior of materials with respect to elasticity, plasticity, and viscoelasticity. Other topics include yield criteria, fracture, the influence of high and low temperatures, and corrosion and radiation. Prerequisites: Permission of instructor.

MAE 753. Composite Materials. 3 Credits.
This course will examine reinforcements, matrices, particulate-composites, short-fiber and continuous-fiber reinforced composites. Directionally solidified composites will also be studied, including the prediction of elastic failure properties. Other topics to be covered include design considerations and experimental work. Prerequisites: Permission of the instructor.

MAE 772. Response Surface Methodology. 3 Credits.
Prerequisites: MAE 672. An applied course in response surface methodology with aerospace applications. Empirical model building, method of least squares, second order models, model adequacy checking, canonical analysis. Method of steepest ascent, multiple response optimization. Rotatable, cuboidal and small run designs. Design optimality and efficiency metrics, robust design, restrictions on randomization. Laboratory exercises include RSM applied to wind tunnel testing and optimization.

MAE 780. Engineering Optimization. 3 Credits.
Formulation and solution algorithms for Linear Programming (LP) problems. Unconstrained and constrained nonlinear programming (NLP) problems. Optimum solution for practical engineering systems.

MAE 781. Advanced Design. 3 Credits.
Concepts, principles and procedures related to analysis of stresses and strains in machine components. Consideration of function of parts along with factors such as forces, life required, maximum cost, weight and space restrictions, number of parts to be produced, material selection, kinematics, environmental restrictions. Finite element analysis to illustrate different aspects of stress analysis. Requires permission of the instructor.

MAE 782. Engineering Software for Computer-Aided Analysis and Design. 3 Credits.
Introduction to advanced CAD software for finite element modeling and analysis, multibody dynamic analysis, kinematic analysis and design optimization. MSC/NASTRAN, PATRAN, DADS, GENESIS and other commercially available software will be discussed. Prerequisites: Permission of the instructor.

MAE 783. Robots and Manufacturing Automation. 3 Credits.
This course will introduce the engineering of industrial robots used for manufacturing automation. Topics to be covered include spatial descriptions and transformations of manipulators, manipulator kinematics and inverse kinematics; manipulator velocities; static forces; and dynamics and trajectory generation. Other topics to be covered include design and on-line computer control of the manipulator.

MAE 784. Computer Integrated Manufacturing. 3 Credits.
Study of the design, control, and management of integrated production/ manufacturing systems. Topics include modeling of production systems; fundamentals of CAD/CAM; robotics, flexible manufacturing systems, group technology, process planning, concurrent engineering, and shop floor control; CIM architecture and communication. Requires permission of the instructor.

MAE 785. Advanced Manufacturing Technology. 3 Credits.
Treatment of the next generation of manufacturing technology. Topics include additive manufacturing; rapid prototyping; electronic manufacturing; micro and nanofabrication; process simulation; product life cycle management; and sustainable design and manufacturing. Prerequisites: MAE 682 or consent of instructor.

MAE 786. Microfabrication. 3 Credits.
MAE 787. Life Cycle Engineering. 3 Credits.
Prerequisites: MAE 682. Study of environmental impacts of engineering products and processes throughout their life cycle. Emphasis on life cycle assessment, recycling, reusing, remanufacturing, and economic considerations.

MAE 788. Computational Intelligence for Engineering Design Optimization Problems. 3 Credits.
The concepts and algorithms of computational intelligence and their applications to engineering optimization problems will be discussed. The topics to be covered include artificial neural networks, evolutionary optimization and swarm intelligence. Both single and multi-objective optimization problems with continuous and/or discrete variables will be examined as well.

MAE 789. Engineering Design with Uncertainties. 3 Credits.
An introduction to managing uncertainties and risk in strength design of mechanical components, including the study of the theoretical background, computational implementation, and application of reliability-based methods for engineering analysis and design. Prerequisites: MAE 608.

MAE 795. Topics in Mechanical and Aerospace Engineering. 3 Credits.
Selected topics in mechanical and aerospace engineering or engineering mechanics.

MAE 797. Independent Study in Mechanical and Aerospace Engineering. 3 Credits.
Individual analytical, computational and/or experimental study in an area selected by the student. Supervised and approved by the advisor.

MAE 806. Real-Time Signals and Systems. 3 Credits.
Introduction to random and harmonic processes, fast Fourier transforms, digital filters, digital signal processing methods, as well as sensors and transducers. Review of the theory and practice of data acquisition. Modeling of linear, lumped and distributed parameter systems. Use of LabVIEW and MATLAB/Simulink for real-time control and dynamic system simulations. Applications to modal analysis, experimental aerodynamics, and real-time control of electro-mechanical systems.

MAE 810. Supersonic Flow. 3 Credits.
This course will examine governing equations for supersonic flow, including full potential equations, small disturbance theory, hodographs, and method of characteristics. It will also serve as an introduction to three-dimensional flows, compressible boundary layer flows, internal flows in nozzles and diffusers, airfoil flows, slender bodies of revolution flows, conical flows, and wing flows. Prerequisites: MAE 514 and MAE 602.

MAE 811. Hypersonic Aerodynamics. 3 Credits.
Prerequisites: MAE 610. General consideration of hypersonic flow and similarity principles, hypersonic flow past slender bodies with sharp and blunt leading edges. Hypersonic blunt-body flow. Real gas, viscous and low density effects, and consideration of nonequilibrium phenomena in hypersonic flows.

MAE 812. Experimental Aerodynamics. 3 Credits.
This course will examine techniques for static and dynamic measurement of pressure, temperature, and velocity. Experiment control and statistical treatment of data will be discussed, as will probe methods, including multipole pressure probes and hot-wire anemometers, and non-intrusive methods, including laser Doppler velocimetry and other optical methods. Surface and stream flow visualization and surface measurements will also be covered. Prerequisites: MAE 602 and MAE 610.

MAE 813. Turbulent Flow. 3 Credits.

MAE 814. Aerodynamic Flow Control. 3 Credits.
Prerequisites: MAE 602 and MAE 610. Introduction and definitions, goals, passive and active control methodologies and techniques. Flow separation control, drag reduction control techniques, flow transition control. Micro-electrical-mechanical systems (MEMS) control, future challenges.

MAE 815. Boundary Layer Theory. 3 Credits.
Prerequisites: MAE 602. Boundary layer equations; method of matched asymptotic expansions; body oriented coordinates, finite-difference solutions; separations, wake and jet flows; thermal and compressible boundary layers, transformations and finite-difference solutions, unsteady boundary layers. Introduction to hydrodynamic stability and turbulence.

MAE 816. Computational Fluid Dynamics I. 3 Credits.
This course will cover the following topics: classification of single partial differential equations; finite difference methods; stability analysis, including convergence, consistency, and efficiency; basics of finite volume methods; model equations of hyperbolic, parabolic and elliptic type; and implicit and explicit schemes, central and upwind schemes, and weak solutions of quasi-linear hyperbolic equations. Prerequisites: MAE 601 or MATH 691.

MAE 818. Aerospace Test Facilities. 3 Credits.
A comprehensive examination of aerodynamic test facilities for use in subsonic, transonic, supersonic and hypersonic flow regimes. Aspects of wind tunnel design and operation will be discussed, as will flow quality and wall and support interferences. Advanced concepts, including cryogenic wind tunnels, adaptive wall test sections and magnetic suspension will be examined, in addition to dynamic testing. There will be a review of flight test methods, including extraction of aerodynamic parameters from flight test data, a review of engine test facilities, and a review of ground test facilities for space structures and other space systems. Prerequisites: Permission of the instructor.

MAE 820. Heat Transfer II. 3 Credits.
Prerequisites: MAE 620. Aspects of conduction, convection and radiation heat transfer, including governing equations, boundary layer flows, analytical and numerical solutions to one-, two- and three-dimensional problems.

MAE 821. Fundamentals of Combustion. 3 Credits.
Prerequisites: MAE 602 and MAE 610. Chemical equilibrium in reacting systems, chemical kinetics of single and multi-step chemical reaction systems, conservation equations for multicomponent reacting systems; Shvab-Zeldovich formulation, detonation and deflagration waves, flammability limits; premixed laminar flames, gaseous diffusion flames; application to engine processes.

MAE 822. Theory and Design of Turbomachines. 3 Credits.
This course will examine real cycles, fluid motion in turbomachines, the theory of diffusers and nozzles, fluid-rotor energy transfer, radial equilibrium, transonic stages, and combustion chambers. Other types of turbines will be discussed including axial and centrifugal turbines. Performance and design criteria will also be examined, as well as cavitation and two-phase flows. Prerequisites: MAE 514 and MAE 602.

MAE 823. Nuclear Engineering. 3 Credits.
This course will consider nuclear power plant systems, and will introduce power reactor control kinetic behavior including safety coefficients, accumulative poisons, and temperature control parameters. It will also examine primary and secondary plant as a transient system.

MAE 824. Energy Utilization and Conservation. 3 Credits.
This course provides an overview of the scope of efficient energy utilization in industrial, commercial, transportation, and power generation fields. It introduces power plant waste-heat utilization, district heating, combined gas and steam cycle, organic fluid-bottoming cycle, and fossil energy concept for residential and commercial buildings. It also examines system management, on-line computer evaluation, and energy analysis. Prerequisites: Permission of instructor.

MAE 830. Finite Element Analysis. 3 Credits.
This course provides an understanding of the finite element method (FEM) as derived from an integral formulation perspective. It demonstrates the solutions of (1-D and 2-D) continuum mechanics problems such as solid mechanics, fluid mechanics and heat transfer. It also provides insight into the theoretical formulation and numerical implementation of finite element methods.
MAE 831. Mechanics of Composite Structures. 3 Credits.

MAE 833. Nonlinear Aerospace Structures. 3 Credits.
Prerequisites: MAE 633 and MAE 634. Classical and finite element analysis methods for nonlinear aerospace structures of beams, plates, and shallow shells. Application to problems of large bending deflection, thermal post-buckling, large amplitude free vibration, nonlinear panel flutter, and nonlinear random response.

MAE 834. Theory of Vibrations. 3 Credits.
This course will introduce applied modal analysis, modes of vibration of discrete systems, modal coordinates, transfer functions in frequency domain, modes of vibration of continuous systems, and approximate systems response. It will also examine Finite Elements methods and nonlinear vibrations. Applications will be extended to rods, beams, plates and shells. Prerequisites: MAE 504 and MAE 601 or MATH 691.

MAE 835. Experimental Structural Dynamics. 3 Credits.
This course will examine experimental techniques and methods for structural dynamics and modal analysis. It will introduce a variety of instruments, including electrodynamic shakers, impact hammers, accelerometers, laser vibrometers, signal analyzers, signal filters, and force transducers. Time and frequency domain data acquisition, assessment, and post-processing will be studied. The development of mathematical models from experimental data will also be conducted. Prerequisites: MAE 634.

MAE 840. Autonomous and Robotic Systems Analysis and Control. 3 Credits.
Kinematics, dynamics and control of complex non-linear electro-mechanical systems, particularly robotic manipulators.

MAE 841. Optimal Control Theory. 3 Credits.
Prerequisites: MAE 640. Parameter optimization, optimization problem for dynamic systems with terminal and path constraints; optimal feedback control with and without the presence of uncertainty; nonlinear optimal control system.

MAE 842. Computational Methods in Multibody Dynamics. 3 Credits.
Prerequisites: Permission of instructor. Basic theories are presented for formulation of equations of kinematics and dynamics of systems made of interconnected bodies. Topics include constrained motion, principle of virtual work and constrained dynamics. Examples cover robotic motion and biomechanics applications such as human locomotion.

MAE 843. Kinematic Synthesis of Mechanisms. 3 Credits.
Prerequisites: Permission of instructor. Classification of mechanisms; type and number synthesis, application of graph theory, expert systems for synthesis; introduction to dimensional synthesis via path and function generation; finite displacement theory including concept of poles, circlepoint, and centerpoint curves; structural error minimization using Chebychev’s approximation; optimization approaches, current applications to robot manipulators, robot hands, space structures, and combustion engines.

MAE 844. Atmospheric Flight Dynamics and Control. 3 Credits.
Prerequisites: MAE 403 or MAE 503 and MAE 604. Principles governing the dynamics and control of vehicles in atmospheric flight. Equations of motion development and solution including inertial/gravitational/aerodynamic/propulsive loads, linear longitudinal and lateral-directional motions, and nonlinear trim and simulation. Flight control system design and analysis incorporating flying quality requirements, linear conventional/contemporary and frequency/time domain techniques for control and guidance functions, validation with nonlinear simulation, gain scheduling.

MAE 845. Space Flight Dynamics and Control. 3 Credits.
Prerequisites: MAE 604 and MAE 640. Principles governing the dynamics and control of vehicles in space flight. Equations of motion development and solution including inertial/gravitational/aerodynamic/propulsive loads, decoupled translational and attitude motions. Orbital mechanics including elements, initial-value propagation, adjustments/transfers, Lambert boundary-value problem, perturbations, and nonlinear simulation. Attitude dynamics including torque free, gravity moment, axisymmetric/unsymmetric vehicles, and dual spinners. Flight control system design and analysis including impulsive velocities, finite burns, Lambert targeting, linear designing momentum wheels, and nonlinear phase-plane design using thrusters.

MAE 846. Advanced Control Methodologies. 3 Credits.
Prerequisites: MAE 640. Review of multivariable dynamic math models including state space, transfer function, and matrix fractions. Multivariable design criteria including stability, performance, and robustness. Theory and application of multivariable control design techniques including LQR/LQG/LTR, H-infinity, Eigenspace Assignment and other advanced methods.

MAE 847. Aerospace Vehicle Performance. 3 Credits.
This course will study the flight performance of aerospace vehicles, including a review of aerodynamic and propulsion characteristics. Range, flight and maneuver envelopes for vehicles in atmospheric flight will be examined. It will introduce various methods of design for trajectory optimization, including launch vehicles. An open-ended, design-oriented project will also be required. Prerequisites: MAE 602 and MAE 514 or MAE 610.

MAE 848. Flight Control Actuators and Sensors. 3 Credits.
This course will provide an overview of the governing principles and operations of actuator and sensor hardware used in aircraft and spacecraft flight control systems. Hydraulic, electro-hydraulic and electric actuators will be examined, as well as control jets and momentum wheels, accelerometers, and rate gyro. Other topics include air-data systems, inertial navigation systems and satellite navigation systems. The course will also examine dynamic model development, analysis and simulation, nonlinear hardware characteristics, and the influence on closed-loop vehicle behavior. Prerequisites: MAE 503, MAE 538, and MAE 604.

MAE 850. Nanoscale Mechanical and Structural Properties of Materials. 3 Credits.
Elastic and plastic properties of nanoscale materials, strain gradient dislocation plasticity, nanoindentation and nanoindentation creep, thin film mechanical and structural properties, kinetic-based investigations of hardening mechanisms in nanolayer composites.

MAE 851. Fatigue and Fracture. 3 Credits.
Divided into areas of fatigue and fracture; stress-controlled and strain-controlled fatigue; effect of mean stresses, notches, etc.; multiaxial stresses; variable amplitude loading; ductile and brittle fracture; linear elastic fracture mechanics; crack-tip plasticity; fracture testing; applications to fatigue life estimation. Requires permission of the instructor.

MAE 852. Mechanical Behavior of Materials. 3 Credits.
An examination of the macroscopic behavior of materials with respect to elasticity, plasticity, and viscoelasticity; yield criteria; fracture; influence of high and low temperatures; and corrosion and radiation. Prerequisites: Permission of instructor.

MAE 853. Composite Materials. 3 Credits.
This course will examine reinforcements, matrices, particulate-composites, short-fiber and continuous-fiber reinforced composites. Directionally solidified composites will also be studied, including the prediction of elastic failure properties. Other topics to be covered include design considerations and experimental work. Prerequisites: Permission of the instructor.

MAE 872. Response Surface Methodology. 3 Credits.
Prerequisites: MAE 672. An applied course in response surface methodology with aerospace applications. Empirical model building, method of least squares, second order models, model adequacy checking, canonical analysis. Method of steepest ascent, multiple response optimization. Rotatable, cuboidal and small run designs. Design optimality and efficiency metrics, robust design, restrictions on randomization. Laboratory exercises include RSM applied to wind tunnel testing and optimization.
MAE 880. Engineering Optimization. 3 Credits.
Formulation and solution algorithms for Linear Programming (LP) problems. Unconstrained and constrained nonlinear programming (NLP) problems. Optimum solution for practical engineering systems.

MAE 881. Advanced Design. 3 Credits.
Concepts, principles and procedures related to analysis of stresses and strains in machine components. Consideration of function of parts along with factors such as forces, life required, maximum cost, weight and space restrictions, number of parts to be produced, material selection, kinematics, environmental restrictions. Finite element analysis to illustrate different aspects of stress analysis. Requires permission of the instructor.

MAE 882. Engineering Software for Computer-Aided Analysis and Design. 3 Credits.
An introduction to advanced CAD software for finite element modeling and analysis, multibody dynamic analysis, kinematic analysis, and design optimization. MSC/NASTRAN, PATRAN, DADS, GENESIS and other commercially available software will be discussed. Prerequisites: Permission of the instructor.

MAE 883. Robots and Manufacturing Automation. 3 Credits.
This course will introduce the engineering of industrial robots used for manufacturing automation. Topics to be covered include spatial descriptions and transformations of manipulators, manipulator kinematics and inverse kinematics; manipulator velocities; static forces; and dynamics and trajectory generation. Other topics to be covered include design and on-line computer control of the manipulator.

MAE 884. Computer Integrated Manufacturing. 3 Credits.
Study of the design, control, and management of integrated production/manufacturing systems. Topics include modeling of production systems; fundamentals of CAD/CAM; robotics, flexible manufacturing systems, group technology, process planning, concurrent engineering, and shop floor control; CIM architecture and communication. Requires permission of the instructor.

MAE 885. Advanced Manufacturing Technology. 3 Credits.
Treatment of the next generation of manufacturing technology. Topics include additive manufacturing; rapid prototyping; electronic manufacturing; micro and nanofabrication; process simulation; product life cycle management; and sustainable design and manufacturing. Prerequisites: MAE 682 or consent of instructor.

MAE 886. Microfabrication. 3 Credits.

MAE 887. Life Cycle Engineering. 3 Credits.
Prerequisites: MAE 682. Study of environmental impacts of engineering products and processes throughout their life cycle. Emphasis on life cycle assessment, recycling, reusing, remanufacturing, and economic considerations.

MAE 888. Computational Intelligence for Engineering Design Optimization Problems. 3 Credits.
A examination of the concepts and algorithms of computational intelligence and their applications to engineering optimization problems. The topics to be covered include artificial neural networks, evolutionary optimization, and swarm intelligence. Both single and multi-objective optimization problems with continuous and/or discrete variables will also be discussed.

MAE 889. Engineering Design with Uncertainties. 3 Credits.
An introduction to managing uncertainties and risk in strength design of mechanical components, including the study of theoretical background, computational implementation, and applications of reliability-based methods for engineering analysis and design. Prerequisites: MAE 608.

MAE 890. Topics in Mechanical and Aerospace Engineering. 3 Credits.
Selected topics in mechanical and aerospace engineering or engineering mechanics.

MAE 897. Independent Study in Mechanical and Aerospace Engineering. 3 Credits.
Individual analytical, computational and/or experimental study in an area selected by the student. Supervised and approved by the advisor.

MAE 899. PhD Dissertation Research in Mechanical and Aerospace Engineering. 1-9 Credits.
Based on the Ph.D candidate's dissertation research in mechanical and aerospace engineering topics under the direction of the candidate's advisor. Prerequisites: Instructor approval required.

MAE 998. Master's Graduate Credit. 1 Credit.
This course is a pass/fail course for master's students in their final semester. It may be taken to fulfill the registration requirement necessary for graduation. All master's students are required to be registered for at least one graduate credit hour in the semester of their graduation.

MAE 999. Doctoral Graduate Credit. 1 Credit.
This course is a pass/fail course doctoral students may take to maintain active status after successfully passing the candidacy examination. All doctoral students are required to be registered for at least one graduate credit hour every semester until their graduation.