Frank Batten College of Engineering and Technology

Web Site: http://www.odu.edu/eng

1105 Engineering Systems Building
757-683-3789

Stephanie Adams, Dean
Shirshak K. Dhali, Associate Dean
Rafael Landaeta, Associate Dean

Mission Statement
In accordance with the mission of Old Dominion University, the Frank Batten College of Engineering and Technology promotes the advancement of engineering knowledge, both by its creation and dissemination and by providing successful graduates and a continuously improving learning environment to its constituents, while maintaining ethical, multicultural and global standards.

Overview
The Frank Batten College of Engineering and Technology at Old Dominion University offers degrees in engineering and engineering technology.

The graduate engineering programs at Old Dominion University are specifically designed to take advantage of and enhance unique assets in the Hampton Roads area, a complex of seven major cities. These assets include: 1) a strong military presence with multiple high technology facilities, particularly as it relates to modeling and simulation; 2) the NASA Langley Research Center with its focus on aeronautics and space exploration; 3) the Jefferson Laboratories, a major center of nuclear physics and home of a major Free Electron Laser; 4) one of the major international deep-water ports on the east coast of the United States; 5) a major ship building and ship repair industry, including Newport News Shipbuilding, the only builder of nuclear aircraft carriers in the U.S.; 6) a major high technology industry base; and 7) a variety of commercial enterprises. These assets have enabled the development of distinctive engineering curricula.

Programs of Study
Table 1 lists the programs of study offered at master’s and/or doctoral levels. Master's degree programs include Master of Engineering (ME), Master of Engineering Management (MEM) and Master of Science (MS). Doctoral degree programs include Doctor of Engineering (DEng) and Doctor of Philosophy (PhD).

Table 1: Graduate Degrees Offered

<table>
<thead>
<tr>
<th>Programs of Study</th>
<th>ME</th>
<th>MEM</th>
<th>MS</th>
<th>DEng</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering (AE)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering (BME)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering (CE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering (CEE)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering (ECE)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management (ENMA)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management and Systems Engineering (EMSE)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering (ME)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering (ME)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling & Simulation (MSIM)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Engineering (SysE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linked Degree Programs
Bachelor’s to Master’s programs
Bachelor’s to Ph.D. programs

Graduate Certificate Programs
- The interdisciplinary Advanced Engineering Certificate Program offers the following tracks.
 - Biomedical Engineering
 - Cyber Systems Security
 - Energy Systems
 - Engineering Management
 - Naval Architecture and Marine Engineering
 - Graduate Certificate in Coastal Engineering
 - Graduate Certificate in Entrepreneurship and Innovation in Engineering
 - Graduate Certificate in Homeland Security
 - Graduate Certificate in Modeling and Simulation Engineering
 - Graduate Certificate in Project Management

Collaborative Programs
Commonwealth Graduate Engineering Program (CGEP)

Master’s Programs
The Batten College of Engineering and Technology grants the following Master’s degrees: Master of Science in Engineering, Master of Engineering, and Master of Engineering Management. The programs of study leading to the master’s degree are listed in Table 1. Interested students should refer to the individual program section of this catalog for admission information and degree requirements.

Linked Bachelor’s to Master’s Degree Programs
These programs are designed to allow qualified students to secure a space in a Master’s program available in the Frank Batten College of Engineering and Technology while they are still pursuing their undergraduate degrees. An eligible student can choose a Master’s program in the same discipline as his/her Bachelor’s program or in a complementary discipline. Subject to the approval of the undergraduate and graduate program directors, a student enrolled in a linked program can count up to six credit hours of course work towards both the undergraduate and the graduate degrees. Full-time students can complete the requirements for the Bachelor’s degree in four years and for the Master’s degree in one additional year.

Students who are matriculated in an undergraduate major in the Frank Batten College of Engineering and Technology with a GPA of at least 3.00 overall and 3.00 in the major are eligible to apply for admission to a linked Bachelor’s/Master’s program. Transfer students who desire to be admitted to a linked program at the time they join an undergraduate major at Old Dominion University are eligible to apply if their overall GPA at their previous institution is 3.25 or higher. Pre-requisite courses may be required for engineering technology majors to pursue a Master’s degree in engineering.

Continuance in a linked Bachelor’s/Master’s program requires maintenance of a GPA of 3.00 or higher overall and in the major.

Doctor of Philosophy (Ph.D.) Programs
The Batten College of Engineering and Technology grants the Doctor of Philosophy degree in Engineering. The programs of study leading to the Ph.D. degree are listed in Table 1. Interested students should refer to the individual program section of this catalog for admission information and degree requirements.

Bachelor’s to Ph.D. Programs
A select number of exceptionally well-qualified students may be admitted directly into the Ph.D. program upon completion of the baccalaureate degree. The total number of graduate course credits required is 48 plus a 30-credit
dissertation. The credit hour requirement is the sum total of the minimum requirements for the Master’s and Ph.D. degree programs.

A select number of exceptionally well-qualified students at Old Dominion University may be admitted to the **Linked Bachelor/Ph.D.** program while they are pursuing their junior year in one of the undergraduate programs. This program encourages admitted students to work closely with individual faculty members during the remainder of their undergraduate program. Just as in the linked Bachelor’s/Master’s program, six credit hours of graduate course work may again be counted toward the undergraduate degree and doctoral course work. Therefore, the total graduate credit hours after obtaining the bachelor’s degree at Old Dominion can be 42 credit hours of graduate courses plus a 30-credit dissertation. That is 6 credits shorter than the regular path. Students in these programs must maintain a GPA of 3.50 or better throughout their bachelor’s studies.

Doctor of Engineering Program

The College offers an interdisciplinary Doctor of Engineering (D.Eng.) program to provide the Commonwealth and the nation with exceptionally educated engineering practitioners. These individuals will have developed the highest possible capability to provide innovative solutions in specialized engineering endeavors. The graduates of the program will meet the highest standards for advanced level engineering and leadership positions in industry and government.

Curriculum

A minimum of 48 hours of graduate work beyond the master’s degree is required including:

- 18 credit hours of core courses
- At least 18 credit hours of graduate coursework in the student’s area of specialization
- At least 12 credit hours of applied doctoral project

At least three fifths of the course work must be at 800-level. The 18 credit hours of core courses are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 604</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENGN 611</td>
<td>Financial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGN 612</td>
<td>Analysis of Organizational Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENGN 811</td>
<td>Methodologies for Advanced Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>ENGN 812</td>
<td>Engineering Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ENGN 813</td>
<td>Engineering Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 18

Six specialization areas are available:

1. Aerospace Engineering
2. Civil and Environmental Engineering
3. Electrical and Computer Engineering
4. Engineering Management and Systems Engineering
5. Mechanical Engineering
6. Modeling and Simulation

Admission Criteria

Consideration for admission to the Doctor of Engineering program requires a formal application, undergraduate and graduate transcripts, and two letters of recommendation. Also required is an essay describing the applicant’s preparation for graduate work, personal and academic goals, and professional objectives. One of the letters of recommendation should be from an agency point of contact if a sponsoring agency is involved. Sponsorship does not necessarily imply financial support, but it rather focuses on the provision of a project and access to data, information, and means to apply and test a solution. A personal or telephone interview of the applicant with the graduate program director will be required.

The minimum eligibility requirements for regular admission to the Doctor of Engineering program are: engineering experience of at least two years within the last five years and a master’s degree with a grade point average of 3.50 out of 4.00 in an appropriate field from an accredited institution of higher education.

Continuation and Graduation Requirements

The continuation requirements are the same as the continuation requirements for the Doctor of Philosophy programs. The graduation requirements for the Doctor of Engineering degree are as follows:

1. Satisfactory completion of a minimum of 48 credit hours of approved graduate work beyond the master’s degree, including the doctoral project.
2. Satisfactory performance on a diagnostic examination at the completion of nine credit hours of coursework. The purpose of this examination is to determine if the student has adequate background to pursue a doctoral degree. The diagnostic examination may only be repeated once.
3. Satisfactory completion of a written and oral candidacy examination. The student will take the candidacy examination when he/she is within six credit hours of completing all the required coursework. The candidacy examination may only be repeated once.
4. Preparation and successful defense of a project concept proposal. The student will be required to prepare and present a concept proposal related to the work that will be undertaken for the doctoral project. The concept proposal will be defended before the doctoral committee.
5. Submission of progress reports as deemed necessary by the doctoral committee.
6. Written report of the project results. The doctoral project shall be documented in a manner consistent with advanced, professional work. The project report will follow the standard format for Old Dominion University dissertations and theses.
7. Comprehensive oral defense of the doctoral project before the student’s doctoral committee and a general audience.

The applied doctoral project must successfully demonstrate the student’s mastery of the subject area and his/her ability to apply advanced technical knowledge to identify, formulate, and solve novel and complex engineering problems. The project must address a complex but practical problem currently faced by the public, industry, or government, and it must provide a solution that satisfies all the technical, social, political, economic, safety, sustainability, and environmental requirements and/or constraints. The doctoral project will have at least three Old Dominion University faculty members certified for graduate instruction; two faculty members must be from the major department. The committee must also have at least one non-University person with special knowledge of the project subject area.

Additional Graduate Degrees Policy

Graduate students may pursue an additional graduate degree in any discipline at Old Dominion University. Such a degree may be sought subsequent to or concurrently with another degree. Students may request that up to six credit hours of graduate level course work used to fulfill requirements for one Master’s degree offered by the Batten College of Engineering and Technology be applied to another Master’s program offered by the College. Approval of the appropriate graduate program directors and college dean is required. Course work used to fulfill requirements for another graduate degree cannot be applied to a doctoral degree offered by the Batten College of Engineering and Technology.

Interdisciplinary Graduate Certificate Programs

The college has established several certificate programs that enable students to specialize in technical areas of current interest to industry, government and academia. Both non-degree and degree-seeking students can enroll in the certificate programs. The programs provide the opportunity for practicing engineers to further their knowledge and become more competent in their profession.

- The interdisciplinary **Advanced Engineering Certificate** Program offers the following tracks,
• Biomedical Engineering
• Cyber Systems Security
• Energy Systems
• Engineering Management
• Naval Architecture and Marine Engineering
• Graduate Certificate in Coastal Engineering
• Graduate Certificate in Entrepreneurship and Innovation in Engineering
• Graduate Certificate in Homeland Security
• Graduate Certificate in Modeling and Simulation Engineering
• Graduate Certificate in Project Management

Advanced Engineering Certificate in Biomedical Engineering

The Graduate Certificate in Biomedical Engineering Program offers students and professionals the opportunity to further their knowledge with advanced study in the growing area of Biomedical Engineering. The program is designed to provide well-rounded instruction in several key facets of Biomedical Engineering. Those who complete the Program receive the Advanced Engineering Certificate in Biomedical Engineering from Old Dominion University and a letter of recognition from the Batten College of Engineering and Technology. Courses taken for the certificate program may later be applied to the Ph.D. degree in Biomedical Engineering.

Certificate Program Admission Requirements
• Bachelor of Science degree (or equivalent) in an engineering field or undergraduate degree in another relevant STEM field.
• Prerequisites for applicants from non-engineering fields include college-level mathematics, calculus-based physics, and chemistry or biology.
• Students enrolled in the Biomedical Engineering Ph.D. or Master of Engineering programs at ODU are not eligible for the certificate.

Certificate Program Curriculum Requirements
• Twelve credit hours of graduate course work
• A grade point average of 3.0 or better

BME Fundamentals*

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 501</td>
<td>Biomedical Engineering I: Principles</td>
<td>6</td>
</tr>
<tr>
<td>BME 502</td>
<td>Biomedical Engineering II: Applications</td>
<td></td>
</tr>
</tbody>
</table>

BME Electives (select two)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 554</td>
<td>Introduction to Bioelectrics</td>
<td>6</td>
</tr>
<tr>
<td>BME 630</td>
<td>Advanced Bioelectrics</td>
<td></td>
</tr>
<tr>
<td>BME 720</td>
<td>Modern Biomedical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>BME 721</td>
<td>Mathematical Modeling in Physiology I</td>
<td></td>
</tr>
<tr>
<td>BME 724</td>
<td>Neural Engineering</td>
<td></td>
</tr>
<tr>
<td>ECE 562</td>
<td>Introduction to Medical Image Analysis (MIA)</td>
<td></td>
</tr>
<tr>
<td>ECE 564</td>
<td>Biomedical Applications of Low Temperature Plasmas</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 12

* Students who have completed BME 401 or BME 402 as part of a previous degree, program, or minor may substitute these courses with graduate-level BME electives approved by the Graduate Program Director.

** Appropriate course substitutions may be considered with permission of the Graduate Program Director.

Advanced Engineering Certificate in Energy Systems

The Graduate Certificate in Energy Systems Engineering Program offers students and professionals the opportunity to further their knowledge with advanced study in the growing area of Energy Engineering. The program is aimed at providing understanding of energy engineering and the increasing role of energy engineers in addressing growing energy needs. The new skills and advanced understanding developed in class will prepare students for employment in rapidly growing energy industries.

Those who complete the Program receive the Advanced Engineering Certificate in Energy Systems Engineering from Old Dominion University and a letter of recognition from the Batten College of Engineering and Technology. Courses taken for the certificate program may also be applied to master’s level or doctoral graduate engineering programs at ODU, where they meet the program requirements.

Certificate Program Admission Requirements
• Baccalaureate degree in engineering—or a related field—from a regionally-accredited institution or an equivalent degree from a foreign institution.
• Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT.

Certificate Program Curriculum Requirements
• Twelve credit hours of graduate course work
• A grade point average of 3.0 or better

Energy Engineering Core Courses 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN 671</td>
<td>Carbon-Free Clean Energy</td>
</tr>
</tbody>
</table>
Energy Engineering Electives (select two)*
ENGR 672 Energy Systems Management
MAE 513 Energy Conversion
CEE 559 Biofuels Engineering
ENGR 673 Fossil Energy
ENGR 697 Independent Study in Energy Engineering
ECE 722 Fundamentals of Solar Cells

Total Hours 12
* Appropriate course substitutions may be considered with permission of the Graduate Program Director.

Advanced Engineering Certificate in Engineering Management
This program provides the opportunity for practicing engineers to further their knowledge and become more competent in managing socio-technical systems. The certificate program is open to both degree-seeking and non-degree-seeking graduate students. Certain courses taken for the certificate program may later be applied to the master’s degree in Engineering Management for students that get formally admitted to the master in engineering management program. The Engineering Management Certificate Program consists of 12 credit hours of graduate level course work. The four courses comprising the certificate program are offered on a regular basis to enable the completion of the program in two years.

Graduate Certificate Admission Requirements
Admission to the program requires a Bachelor of Science degree in engineering (or equivalent). The certificate consists of four pre-approved graduate level courses contributing to an emphasis area that can be interdisciplinary.

For more information please contact:
Graduate Program Director for Master’s Programs
Old Dominion University
2101 Engineering Systems Building
Norfolk, VA 23529

Graduate Certificate Course Requirements
The Graduate Certificate in Engineering Management requires the completion of 12 credit hours at the graduate level. The courses are offered via distance learning.

Select 4 of the following:
ENMA 600 Cost Estimating and Financial Analysis
ENMA 601 Analysis of Organizational Systems
ENMA 602 Systems Engineering Management
ENMA 603 Operations Research
ENMA 604 Project Management
ENMA 614 Quality Systems Design

Total Hours 12
* Appropriate course substitutions may be considered with permission of the Graduate Program Director.

A grade point average of 3.0 or better is required to earn the certificate.

Advanced Engineering Certificate in Naval Architecture and Marine Engineering
In order to provide the opportunity for practicing engineers to further their knowledge and to become more competent in the fields of Naval Architecture and Marine Engineering, the Department of Mechanical and Aerospace Engineering offers a non-degree graduate level certificate program in Naval Architecture and Marine Engineering. Admission to the program requires a Bachelor of Science degree (or equivalent) in Mechanical Engineering, Aerospace Engineering, Naval Architecture and Marine Engineering, or a related field. The students must complete four 3-credit graduate-level courses to earn a certificate. The certificate program credits will be transferable to the Master’s degree programs in Mechanical and Aerospace Engineering. The certificate program offers two tracks:

1. Naval Architecture
2. Marine Engineering

To meet the requirements of either track, students must complete a common required course, Engineering Mathematics or MAE 608, Applied Mathematics for Engineers and three 3-credit courses described below.

Naval Architecture Track:

Required
MAE 550/888 Principles of Naval Architecture 3

Select two of the following:
MAE 788 Computational Intelligence for Engineering Design Optimization Problems 6
MAE 695 Topics in Mechanical and Aerospace Engineering (Numerical Marine Hydrodynamics)
MAE 695 Topics in Mechanical and Aerospace Engineering (Ship Resistance and Propulsion)
MAE 695 Topics in Mechanical and Aerospace Engineering (Dynamics of Marine Crafts)
MAE 695 Topics in Mechanical and Aerospace Engineering (Marine Structures)

Total Hours 9

Marine Engineering Track:

Required
MAE 511 Mechanical Engineering Power Systems 3
MAE 512 Environmental Control
MAE 517 Propulsion Systems
MAE 602 Fluid Dynamics and Aerodynamics
MAE 722/822 Theory and Design of Turbomachines

Total Hours 9

Graduate Certificate in Entrepreneurship and Innovation in Engineering
Entrepreneurship and innovation are expected to be primary forces in the creation of new business ventures that drive growth and progress in the worldwide economy. Experienced engineering professionals pursuing this certificate may seek to implement their ideas in a multitude of organizational structures. Many may seek outlets outside their current work environments where they can bring their ideas to fruition.

This certificate program provides an integrated approach to teaching, mentoring and encouraging engineering professionals. It introduces engineering students and students from other disciplines with an engineering background to a wide range of entrepreneurial approaches. The certificate’s content addresses the formation of start-up ventures, the growth of existing ventures, and the continued viability of mature, technical enterprises.

Graduate Certificate Admission Requirements
All applicants admitted to the certificate program must have earned a baccalaureate degree from a regionally-accredited institution or an equivalent degree from a foreign institution. Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT.

The Graduate Certificate in Entrepreneurship and Innovation in Engineering requires the completion of the courses listed below totaling 12 credit hours at the graduate level.

ENGR 620 The Entrepreneurial Engineer 2

Frank Batten College of Engineering and Technology

The certificate in Mission Analysis and Engineering provides students and professionals with the necessary understanding to manage engineering and systems engineering activities such that mission supporting capabilities are achieved in even the most complex conditions. The program is designed to elevate understanding of the difficulties that are endemic to working with complex, socio-technical systems, or system of systems, in extremely transient and uncertain situations. It provides the student with the opportunity to hone planning, decision-making, and/or execution skills necessary to work transformational environments. It is recommended that students intending to take the certificate contact the certificate director to develop a plan of study that will most benefit the student’s goals.

Admission Requirements

All degree-seeking applicants admitted to the certificate program must meet ODU requirements for graduate admission: an earned baccalaureate degree from a regionally-accredited institution or an equivalent degree from a foreign institution. Those whose native language is not English must submit a minimum score of 230 on the computer-based TOEFL or 80 on the TOEFL iBT.

Non-degree seeking students are required to have these same credentials, though documentation is not required. Ultimately, students must apply to the program in order to obtain the certificate.

Curriculum Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 560</td>
<td>Mission Analysis and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 702</td>
<td>Systemic Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 750</td>
<td>System of Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 660</td>
<td>Systems Architecture and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 605</td>
<td>Program Capstone (Required) *</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours: 13

* Instructor approval required. Pre- or co-requisite: ENMA 650.

Graduate Certificate in Mission Analysis & Engineering

The graduate certificate in Mission Analysis and Engineering is designed to elevate understanding of the difficulties that are endemic to working with complex, socio-technical systems, or system of systems, in extremely transient and uncertain situations. It provides the student with the opportunity to hone planning, decision-making, and/or execution skills necessary to work transformational environments. It is recommended that students intending to take the certificate contact the certificate director to develop a plan of study that will most benefit the student’s goals.

Graduate Certificate Course Requirements

The Graduate Certificate in Mission Analysis and Engineering requires the completion of 12 credit hours at the graduate level. The course requirements are:

Select three courses from the following:
- MSIM 601 Introduction to Modeling and Simulation
- MSIM 602 Simulation Fundamentals
- MSIM 510 Model Engineering
- MSIM 603 Simulation Design
- MSIM 541 Computer Graphics and Visualization
- MSIM 551 Analysis for Modeling and Simulation
- MSIM Elective *

Total Hours: 12

* A graduate level elective approved by the Graduate Program Director. This elective may be an MSIM course or from another discipline outside of modeling and simulation. It is possible that this course may be outside of the discipline of modeling and simulation, but approved because it complements the field of modeling and simulation and the student's interests.

An overall GPA of 3.0 or better is required to earn the graduate certificate in modeling and simulation engineering.

Graduate Certificate in Project Management

The project management graduate certificate program is designed to facilitate learning essential and contemporary concepts, tools, and processes to manage projects in modern organizations. Courses in the program cover a mix of technical and human topics that are needed for successful project management. Students looking to enroll in the certificate program must meet the admission requirements of Old Dominion University at the graduate level to obtain the Graduate Certificate in Project Management. Certain courses taken for the certificate program may later be applied to the master’s degree in Engineering Management for students that get formally admitted to the master in engineering management program. The graduate certificate in Project Management consists of 12 credit hours of graduate level course work. The four courses comprising the certificate program are offered on a regular basis to enable the completion of the program in two years.
Graduate Certificate Admission Requirements
Admission to the program requires a Bachelor of Science degree in engineering (or equivalent). The certificate consists of four pre-approved graduate level courses contributing to an emphasis area that can be interdisciplinary. A grade point average of 3.0 or better is required to earn the certificate.

Graduate Certificate Course Requirements
The Graduate Certificate in Engineering Management requires the completion of 12 credit hours at the graduate level. The courses are offered via distance learning. The four required courses are listed below:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 604</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 780</td>
<td>Leadership for Engineering Managers</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 410/510</td>
<td>Agile Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMA 700/800</td>
<td>Economic Analysis of Capital Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Optional

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMA 601</td>
<td>Analysis of Organizational Systems</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 12

An overall GPA of 3.00 or better is required to earn the graduate certificate in project management.

ENGINEERING Courses
ENGN 554. Introduction to Bioelectrics. 3 Credits.
A one-semester course covering the electrical properties of cells and tissues as well as the use of electricity and magnetism in the diagnosis and treatment of disease. Typical topics to be covered include electrocardiography, cardiac pacing, defibrillation, electrotherapy, electroportation, electrotherapy in wound healing. In addition ultrashort electrical pulses for intracellular manipulation and the application of plasmas to biological systems will be covered. (Cross listed with ECE 554). Prerequisites: PHYS 111N or higher; MATH 200 or higher.

ENGN 602T. Engineering for Secondary School Teachers. 1-3 Credits.
An introduction to foundations of design and civil, environmental, electrical, mechanical, and computer engineering. The course will consist of secondary school appropriate content and concepts that directly correlate with the state and local school systems' science and mathematics curriculum. May lead to a Project Lead the Way certification when applicable. Prerequisites: Bachelor's degree or permission of the instructor.

ENGN 603T. Engineering Seminar for Teachers. 1-3 Credits.
An introductory seminar on specific multi-disciplinary or interdisciplinary engineering topics for MS or HS teachers. Prerequisites: Bachelor's degree or permission of the instructor.

ENGN 611. Financial Engineering. 3 Credits.
Financial engineering management, accounting, financial reports and analysis, capital budgeting, investment decisions.

ENGN 612. Analysis of Organizational Systems. 3 Credits.
Introduction to fundamental concepts in the analysis of organizations. Examination of social, structural, procedural, and environmental aspects by systems approach. Modules include: History and systems of organizations and management; Basic organizational systems and models; Organizational behavior models; Integration of systems perspectives; and Organizational structures.

ENGN 620. The Entrepreneurial Engineer. 2 Credits.
This course is designed to provide engineers and engineering technologists with the knowledge, skills and experience needed to create products and services that will be attractive to consumer markets and to bring those products and services to market in new commercial ventures. Topics covered include: how to evaluate entrepreneurial opportunities in the engineering field; elements of a viable business plan; governance models; management succession planning; use of social media; and creating an ethical engineering enterprise in the global economy.

ENGN 621. The Entrepreneurial Engineer. 2 Credits.
This course is designed to provide engineers and engineering technologists with the knowledge, skills and experience needed to create products and services that will be attractive to consumer markets and to bring those products and services to market in new commercial ventures. Topics covered include: How to evaluate entrepreneurial opportunities in the engineering field; elements of a viable business plan; governance models; management succession planning; use of social media; and creating an ethical engineering enterprise in the global economy.

ENGN 622. Remote Sensing. 3 Credits.
The course will cover electromagnetic passive and active sensing systems, earth resource satellite systems, digital image formats, image enhancement, interpretations and applications of computer assisted interpretation in mapping, geology, water quality and urban and regional planning. It also covers image rectification, registration and image data merger with GIS.

ENGN 623. Leadership and Human Dynamics for the Entrepreneurial Engineer. 2 Credits.
This course covers the concepts, skills, and characteristics of effective and successful entrepreneurial leaders in the 21st century. The course covers leadership for entrepreneurial engineers through case studies and literature review in areas such as the fundamentals of leadership, ethical leadership, social capital, emotional intelligence, and three-dimensional leadership.

ENGN 625. Business Planning for Entrepreneurial Engineers. 2 Credits.
This course is the capstone of the Entrepreneurship and Innovation graduate certificate for engineers. With data and expertise through prior certificate coursework, students develop and present a comprehensive and viable entrepreneurial business plan in engineering. Topics covered include: Product lifecycle management, marketing and strategic planning, entrepreneurial finance, and effective presentation techniques. The final presentation is delivered to a panel of ODU faculty and engineering practitioners who provide sound feedback to the student.

ENGN 630. Advanced Bioelectrics. 3 Credits.
A one-semester course covering advanced topics in bioelectrics. The course will cover advanced application of pulsed power and plasma in the medical, biological and environmental fields. (Cross-listed with ECE 630). Prerequisites: bachelor’s degree in physics, engineering or biology.

ENGN 671. Carbon-Free Clean Energy. 3 Credits.
Nuclear power and nuclear energy; solar energy; wind energy; geothermal energy; hydroelectric power; hydrogen as energy resource; hydrogen fuel cells; hybrid technologies; global economics and environmental impacts of carbon-free energy.

ENGN 672. Energy Systems Management. 3 Credits.
System management principles; energy systems safety and security; automation and control; environmental effects and comparative risk assessment; energy storage; carbon sequestration; energy systems scale up issues; energy systems integration; hybrid systems; energy systems optimization; effects of public policies on energy systems management.

ENGN 673. Fossil Energy. 3 Credits.
Fossil fuel; global supply and demand; techniques for fossil fuel recovery; technologies for fossil fuel conversion; crude oil characterization and classification, oil refineries, heavy oil shale, tar sand, bitumen; coal characterization, recovery, conversion; natural gas, shale gas, landfill gas, gas hydrates; organic and polymeric wastes; environmental impacts.

ENGN 695. Multidisciplinary Topics in Engineering. 1-3 Credits.
Special interdisciplinary or multidisciplinary topics of interest with emphasis on emerging areas in engineering.

ENGN 697. Independent Study in Energy Engineering. 3 Credits.
Individual analytical, experimental, computational and/or design study selected by the student and supervised by the course instructor.

ENGN 811. Methodologies for Advanced Engineering Projects. 3 Credits.
Critical evaluation of published literature; experimental design and analysis; optimization methods; pre-project planning; definition of scope, projects risks, technical, economical, social, and political constraints; execution strategies; effective proposal development. Prerequisite: Graduate standing.
ENGN 812. Engineering Leadership. 3 Credits.
Effective communication techniques, strategic planning, building collaborative relationships, conflict management, building high-performance teams, risk management, managing innovations. Prerequisites: Graduate standing.

ENGN 813. Engineering Ethics. 3 Credits.
Scope of engineering ethics, moral reasoning and ethical theories, the engineer’s responsibility for safety, responsibilities to the employer, responsibilities to the public, rights of engineers, global issues, professional codes of ethics, case studies. Prerequisites: Graduate standing.

ENGN 998. Master’s Graduate Credit. 1 Credit.
This course is a pass/fail course for master's students in their final semester. It may be taken to fulfill the registration requirement necessary for graduation. All master's students are required to be registered for at least one graduate credit hour in the semester of their graduation.