School of Medical Diagnostic and Translational Sciences

Modeling and Simulation Certificate in Health Sciences

Steven Morrison, PhD, Program Coordinator

The Modeling and Simulation in Health Sciences certificate program is designed for students to develop competency in the use of modeling and simulation theory, methods and technologies to support health sciences research, policy-making, and training in the health care domain. The core course of this program covers the basic knowledge of Modeling and Simulation while the other three courses focus on the applications of M&S in health care related fields.

This program is targeted to graduate students interested in pursuing a career in modeling and simulation in health care or graduate students enrolled in the PhD program at the College of Health Science who desire to focus their research and/or course of study in modeling and simulation. The expected time to complete the certificate is four semesters.

Admission to this certificate program requires a bachelor’s degree (or equivalent) and a previous knowledge of calculus and statistics. The basic certificate requirements are four three-hour courses for a total of twelve required credits. The basic simulation core class called Introduction to Modeling and Simulation of three credits is required, plus nine credits of discipline specific classes. A 3.00 GPA for the four-course sequence is required for successful completion. Total amount of credit: 12.

MSIM 601	Introduction to Modeling and Simulation	3
HLSC 815	Decision Analysis in Health Care	3
Discipline Specific Class		3
Discipline Specific Class		3
Total Hours		12

Since Modeling and Simulation is a highly multidisciplinary science, other colleges can offer discipline specific classes, such as:

BIOL 772	Modeling and Simulation in the Life Sciences	4
PSYC 731	Human Cognition	3
BIOL 732	GIS in the Life Sciences	3
BNAL 722	Agent-Based Simulation and Modeling	3

Molecular Diagnostics Certificate Program

http://www.odu.edu/mdts/molecular-diagnostics

Robert Bruno, PhD, Program Director

The discipline of molecular diagnostics includes all tests and methods to identify disease, a predisposition for a disease, diagnosis and prognosis of disease, and potential responses to drug therapy by analysis of an individual’s DNA, RNA, and proteins. Molecular technology is now widely applied to infectious disease, genetics testing, identification of methicillin-resistant Staph aureus (MRSA), cancer diagnosis and metastasis, forensic science, and personalized medicine.

The post-baccalaureate molecular diagnostics certificate program is designed to provide fundamental principles, advanced applications and laboratory skills needed for molecular diagnostic and molecular biology procedures conducted in clinical and research environments.

The Certificate is awarded upon completion of 12 credit hours in a coherent sequence with a 3.0 GPA.

MDTS 500	Principles of Molecular Pathology and Clinical Diagnostics
MDTS 501	Molecular Diagnostics Laboratory
MDTS 600	Advanced Clinical Applications of Molecular Diagnostics
MDTS 601	Advanced Molecular Diagnostics Laboratory

Optional Course

| MDTS 668 | Clinical Laboratory Internship |

| Total Hours | 12-15 |

MEDICAL DIAGNOSTIC AND TRANSLATIONAL SCIENCES Courses

MDTS 500. Principles of Molecular Pathology and Clinical Diagnostics. 3 Credits.

Basic concepts of molecular pathology and clinical diagnostics including nucleic acids, DNA replication, transcription, proteins, mutations and chromosome changes that underlie inherited and acquired/infectious disease, inheritance patterns and genetics as applied to oncology, cardiac disease and organ transplants. Covers emerging molecular/cytologic/histologic methods (amplification, hybridization and microarrays) to detect disease markers, monitor therapy and assess identity; pharmacogenomics and legal/ethical issues of genetic testing. Prerequisites: permission of instructor.

MDTS 501. Molecular Diagnostics Laboratory. 3 Credits.

Course includes hands-on experience with or discussion of diagnostics instrumentation and assays using nucleic acid and protein extraction, gel electrophoresis, hybridization techniques, standard and real time polymerase chain reaction PCR), reverse transcription, DNA sequencing, autoradiography, flow cytometry, microarrays and proteomics-based methods. Pre- or corequisite: MDTS 500 or permission of instructor.

MDTS 600. Advanced Clinical Applications of Molecular Diagnostics. 3 Credits.

Course will cover 1) new applications of standard molecular diagnostic techniques and 2) cutting edge technologies, instrumentation and technical advances, both as applied to clinical case studies. Emphasis will be on pharmacogenomics and disease processes including inherited conditions, cancer, hematoopathology, infectious diseases, mental retardation and developmental delay. Innovative technologies covered include comparative genomic hybridization, pyrosequencing and bead based assays Prerequisites: MLRS 500, MLRS 501 or permission of instructor.

MDTS 601. Advanced Molecular Diagnostics Laboratory. 3 Credits.

Emphasis of this course will be on primer design for PCR, advanced real time PCR, cycle sequencing, capillary electrophoresis (CE) as applied to DNA sequencing, analysis of SNPs (single nucleotide polymorphisms), microsatellite instability, microarray technology and detection of methicillin-resistant bacteria. Prerequisites: MDTS 500, MDTS 501 or permission of instructor. Pre- or corequisites: MDTS 600.

MDTS 668. Clinical Laboratory Internship. 3 Credits.

An optional three-week supervised rotation in a hospital-based molecular diagnostic laboratory or a molecular research laboratory. Prerequisites: MDTS 500, MDTS 501, MDTS 600, and MDTS 601 or permission of instructor.

MDTS 714. Molecular Diagnostics Laboratory. 2,3 Credits.

Laboratory rotation with a pre-designated faculty member in which the student obtains hands-on experience. Designed for graduate students to sample different types of research models, techniques, and subject matter without the commitment of dissertation level involvement. Prerequisites: Graduate Program Director approval required.
MDTS 805. Fundamentals of Cancer Biology. 3 Credits.
Course will cover molecular aspects of cancer including DNA damage, tumor viruses, cell cycle regulation, oncogenes and tumor suppressor genes and their respective roles in cancer prevention/development, genes involved in promoting or inhibiting metastasis, angiogenesis, telomeres and telomerase, regulation of both apoptosis and autophagy in normal and cancer cells, cancer stem cells, and diagnostic screening assays for therapeutic responses or resistance in cancer patients. Prerequisites: MDTS 600 and MDTS 601 or equivalents; instructor approval also required.

MDTS 810. Molecular Basis of Health and Disease. 3 Credits.
Emphasis is on human genetic syndromes and disorders associated with dysregulation of key signal transduction pathways that control gene expression, cell growth and protein synthesis including the Ras/MAPK pathway, tuberous sclerosis complex-mammalian target of rapamycin, PI3-kinase and others. Diagnosis, screening and treatment will be covered. Prerequisites: MDTS 600 and MDTS 601.

MDTS 814. Molecular Laboratory Rotation. 2,3 Credits.
Laboratory rotation with a pre-designated faculty member in which the student obtains hands-on experience. Designed for graduate students to sample different types of research models, techniques, and subject matter without the commitment of dissertation level involvement. Prerequisites: Graduate Program Director approval required.

MDTS 895. Topics in Molecular Medicine. 1 Credit.
Student led presentations of current topics related to molecular medicine. Prerequisites: Instructor approval required.

MDTS 898. Molecular Biology Research. 3-6 Credits.
Supervised doctoral research in molecular diagnostics or biomedical studies. Prerequisites: MLRS 600 or MDTS 600 and MLRS 601 or MDTS 601; instructor approval required.