OEAS - Ocean, Earth and Atmospheric Sciences

OCEAN, EARTH AND ATMOSPHERIC SCIENCES Courses

OEAS 106N, Introductory Oceanography. 4 Credits.
Introductory course emphasizing the geology, chemistry, physics and biology of the oceans. Laboratory emphasizes practice of basic scientific methods. Knowledge of the metric system, scientific notation, ratio and proportion, and graphing is required. Field trip required.

OEAS 108N, Understanding Global Climate Change. 4 Credits.
What is the science behind global climate change? How reliable are forecasts of future global warming? This course examines these questions to evaluate the likelihood and potential severity of anthropogenic climate change in the coming centuries. It includes an overview of the physics of the greenhouse effect, an overview of the global carbon cycle and its role as a global thermostat; an examination of predictions and reliability of model forecasts of future climate change; and examination of local impacts of global climate change (e.g., sea level rise in the Tidewater area).

OEAS 110N, Earth Science. 4 Credits.
This is an introductory course in geological sciences. The course relates the principles of natural science to Earth as a planet, its resources, and its environment. The effects of geologic processes on the environment are stressed. A student receiving credit for OEAS 110N cannot receive credit for OEAS 111N.

OEAS 111N, Physical Geology. 4 Credits.
This course introduces the student to the study of the materials, structures, and processes of the Earth. Present terrestrial resources are interpreted in terms of the internal and surface processes that formed them. A student receiving credit for OEAS 111N cannot receive credit for OEAS 110N.

OEAS 112N, Historical Geology. 4 Credits.
The evolution of the continents, ocean basins, mountain chains, and the major life forms throughout Earth's history are studied chronologically and are related to the physical and biological changes that have caused them. Prerequisite: OEAS 110N or OEAS 111N.

OEAS 126N, Honors: Introductory Oceanography. 4 Credits.
Open only to students in the Honors College. Special honors section of OEAS 106N. In addition to broad coverage of the geology, chemistry, physics and biology of the ocean, students will read scientific papers with current environmental problems. There will be several field trips to nearby ecosystems.

OEAS 195, Topics. 1-4 Credits.
Special topics in physical, geological, chemical or biological oceanography.

OEAS 196, Topics. 1 Credit.
Special topics in phsical, geological, chemical, or biological oceanography.

OEAS 210, Environmental Earth Science. 4 Credits.
Dynamic processes of the land, ocean, and atmosphere and how they affect people. Topics include plate tectonics; rocks and minerals; soil and water; weather and climate; tides and currents; limits to natural resources. Does not satisfy OEAS major degree requirements.

OEAS 220T, Introduction to Meteorology. 3 Credits.
This course is an introduction to the basic principles governing both day-to-day weather and the average of weather, or climate. Special focus will be given to the tools used to measure weather and the ways in which these tools have impacted our understanding of weather in the past and present. Links will be made between the technology-based improvements of our understanding of weather and the impact on the lives of humans throughout recent history. Students will learn about how weather forecasts are made, and how the quality of these forecasts affects our lives.

OEAS 250N, Natural Hazards and Disasters. 4 Credits.
This course introduces the science behind some of Earth's natural phenomena that can, and often do, result in major loss of life or catastrophic damage to property. It includes an overview, with relevant case studies, of earthquakes, tsunamis, landslides, volcanic eruptions, tropical cyclones (hurricanes), tornadoes, floods, droughts, and space weather. The impact of global climate change and sea level rise on vulnerable populations is examined and current risk assessment and mitigation practices are discussed.

OEAS 295, Special Topics. 3 Credits.
An investigation of a selected problem in physical, geological, chemical, or biological oceanography. Prerequisite: sophomore standing or permission of the instructor.

OEAS 302, Environmental Geology. 3 Credits.
Geologic resources and processes that limit human activities and pose significant hazards. Does not satisfy OEAS major degree requirements. Prerequisites: junior standing and an 8-hour sequence in a General Education science course.

OEAS 303, Paleontology. 3 Credits.
This course introduces the concepts of paleontology. Topics include: the concept of time; taphonomy and fossil types; fossil Lagerstatten; biomineralization; functional morphology and baurpans; paleontological versus biological species concept; biofilms; morphospace and adaptive landscapes; evolution of main invertebrate groups; paleoecology; extinction dynamics; and human evolution and the Anthropocene. Two field trips are recommended. Prerequisite: OEAS 112N.

OEAS 306, Oceanography. 3 Credits.
General survey of physical, geological, chemical and biological oceanography. The application of skills from mathematics, geology, physics, biology and chemistry for the solution of oceanographic problems. Prerequisites: MATH 211, BIOL 121N and BIOL 122N, CHEM 121N-122N, OEAS 111N, and PHYS 111N or PHYS 231N.

OEAS 310, Global Earth Systems. 3 Credits.
Core course for ocean and earth sciences majors that examines the processes linking the Earth's atmosphere, lithosphere, and hydrosphere into an interactive system. Prerequisites: BIOL 121N and BIOL 122N, CHEM 121N-CHEM 122N, MATH 211, and OEAS 111N.

OEAS 315, Minerals and Rocks. 4 Credits.
The course introduces the main igneous, sedimentary and metamorphic rocks and their mineral composition. Laboratory exercises include mineral identification by physical and microscopic optical properties, the identification of rocks in hand samples, and basic training with the Brunton compass. Field work includes training in introductory facies analysis, and the analysis of sedimentary rock structures, unconformities, volcanic, plutonic, and metamorphic rock units, clastics and carbonates. Prerequisites: OEAS 111N, CHEM 121N, and CHEM 122N.

OEAS 320, Sedimentology and Stratigraphy. 4 Credits.
The origin, transport, and deposition of sediments with emphasis on interpretation of sediment sequences, principles and methods of correlation. Laboratory exercises involve field sampling, textural analyses, and sedimentary structures. Field trip required. Prerequisites: OEAS 110N or OEAS 111N.

OEAS 344W, Geomorphology. 3 Credits.
Geologic processes that shape the earth's surface. Laboratory exercises involve interpretation of topographic maps, soil maps, and aerial photographs. Field trip required. This is a writing intensive course. Prerequisites: OEAS 112N, OEAS 320 AND either ENGL 211C or ENGL 221C or ENGL 231C with a grade of C or better; or permission of instructor.

OEAS 367, Cooperative Education. 1-3 Credits.
Available for pass/fail grading only. Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and the Career Management program prior to the semester in which the experience is to take place. Prerequisites: junior standing and permission of the department.
OEAS 368. Internship in Ocean and Earth Sciences. 1-3 Credits. Available for pass/fail grading only. Students gain on the job work experience related to their undergraduate curriculum. Prerequisites: junior standing, permission of department and a 3.00 grade point average.

OEAS 369. Practicum, 1-3 Credits. Field experience in ocean, earth and atmospheric sciences. (qualifies as a CAP experience) Prerequisite: junior standing, permission of department and must have declared ocean and earth sciences major or minor.

OEAS 395. Selected Topics. 3 Credits. A nonmathematical course based on topics such as urban geology, urban biometeorology, and intelligent life in the universe. Specific topics will be announced each semester. Prerequisite: completion of 8 hours of a laboratory science.

OEAS 402/502. Field Experiences in Oceanography for Teachers. 3 Credits. Field and laboratory experiences in oceanography including hands-on experience using equipment and methods suitable for middle and secondary education professionals. Course will provide understanding of oceanic processes using simple field and laboratory experiments. Not available for credit for OEAS majors and minors. Prerequisite: background in K-12 Education.

OEAS 403W/503. Aquatic Pollution. 3 Credits. This course will present basic ecological principles relevant to water pollution and ecotoxicology. Topics will include runoff, eutrophication, water and sewage treatment, industrial waste, oil pollution, pesticides, and plastics in the sea. Case studies provide focal points for consideration of issues in making decisions and setting policy. This is a writing intensive course. Prerequisites: grade of C or better in ENGL 211C, ENGL 221C, or ENGL 231C. Pre- or corequisites: a grade of C or better in OEAS 306.

OEAS 404/504. Environmental Physiology of Marine Animals. 3 Credits. Functional morphology and physiological aspects of growth and ecological energetics of marine animals. Basic concepts and habitat comparisons. Prerequisite: junior standing; upper level biology courses.

OEAS 405/505. Physical Oceanography. 3 Credits. Physics of the ocean: properties of seawater and their distribution; water mass formation; mass and energy flows; waves; tides; models; estuarine and coastal processes. An elective for science and engineering majors. Prerequisites: C or better in MATH 211 and either PHYS 232N or two semesters of hydraulics.

OEAS 406/506. Matlab. 1 Credit. This course is designed to introduce students to Matlab programming and to develop skills utilizing this program for data analysis Prerequisites: C or better in MATH 211 or permission of instructor.

OEAS 408/508. Introductory Soils. 4 Credits. Nature and properties of soils. Physical and chemical processes in soils and their influence on plant growth, the movement of water, and pollutants. Importance of soil properties in determining urban, industrial and agricultural uses. Prerequisite: CHEM 121N-CHEM 122N and CHEM 123N-CHEM 124N.

OEAS 410/510. Chemical Oceanography. 3 Credits. Chemical composition of the ocean and the chemical, biological, geological and physical processes controlling it. Prerequisites: CHEM 121N-CHEM 122N and CHEM 123N-CHEM 124N, OEAS 306 or consent of instructor.

OEAS 411/511. Structural Geology. 4 Credits. Recognition, habitat, and origin of deformed geologic structures. Relationships between structural patterns and tectonic settings. Laboratory sessions emphasize cartographic and stereographic projections, map interpretation, and hand sample evaluation. Weekend field trip required. Prerequisite: OEAS 320 or permission of instructor.

OEAS 412/512. Global Environmental Change. 3 Credits. An examination of the development of the earth as a habitable planet, from its origin to human impacts on global biogeochemical cycles on land, and in the oceans and atmosphere. Prerequisites: OEAS 306 and OEAS 310.

OEAS 413/513. Environmental Geochemistry. 3 Credits. Low temperature geochemistry of surface and near-surface materials and processes. Weathering and the geochemical cycle as influenced by environment. Prerequisites: CHEM 121N-CHEM 122N and CHEM 123N-CHEM 124N and OEAS 111N.

OEAS 415/515. Waves and Tides. 3 Credits. Causes, nature, measurement and analysis of water waves and tides. Mathematical and graphical application to wave and tide problems. Prerequisites: C or better in MATH 212 and PHYS 232N or permission of the instructor.

OEAS 416/516. Electronics and Oceanographic Instrumentation. 3 Credits. The course will consist of brief lectures and hands-on laboratory exercises, in which students will learn to build, use, and debug electronic devices relevant to ocean and earth science applications. Topics covered will include circuit theory, power supplies and budgets, transducers and amplifiers, computerized data acquisition, instrument control, signal conditioning and resolution. Prerequisites: PHYS 232N or 112N, OEAS 306, OEAS 310, STAT 310 or STAT 330.

OEAS 418/518. Chemical Limnology. 3 Credits. Chemical cycling in lakes and reservoirs, and interactions with biological and physical processes; quantitative modeling of lake geochemistry. Prerequisite: OEAS 306.

OEAS 419/519. Spatial Analysis of Coastal Environments. 3 Credits. The course integrates remotely sensed and field techniques for scientific investigation and practical management of coastal environmental systems. Spatial modeling of coastal processes and management tools using geographic information system (GIS). Prerequisites: GEOG 404/GEOG 504.

OEAS 420/520. Hydrogeology. 3 Credits. Topics covered will include the occurrence and movement of surface and subsurface water, the nature and distribution of permeable rocks and strata, field techniques used in ground-water studies, and the flow of ground-water to wells. Prerequisites: OEAS 320, MATH 211, PHYS 111N-PHYS 112N or PHYS 231N-PHYS 232N, or permission of the instructor.

OEAS 426/526. Concepts in Oceanography for Teachers. 3 Credits. This web-based course will provide a practical introduction to oceanography for earth science teachers. It is particularly aimed at current science teachers attempting to become certified in earth science education. Topics will include discussions of geological, biological, physical and chemical oceanography. Not available for credit for OEAS majors and minors. Prerequisite: junior standing or permission of the instructor.

OEAS 430/530. Introduction to Geophysics. 3 Credits. Introduction to the physics of the earth, including plate tectonics, volcanism, earthquakes and seismology, gravity, the Earth's magnetic field, geophysical remote sensing, and mantle convection. Prerequisites: OEAS 111N, MATH 211, and PHYS 111N-PHYS 112N or PHYS 231N-PHYS 232N.

OEAS 431/531. Sedimentary Petrology. 3 Credits. The chemical aspects of sediments and sedimentary rock needed for modern geologic and oceanographic studies. Optical petrology and x-ray diffraction are emphasized in the laboratory with particular attention to clay mineralogy. Field trip required. Prerequisite: OEAS 320.

OEAS 432. Introduction to Thermo- and Fluid Dynamics for Oceanographers. 3 Credits. The objective of this course is to impart the basic knowledge of thermo- and fluid dynamics required to understand these concepts and theories in physical oceanography. Prerequisite: MATH 211, MATH 212, PHYS 231N and PHYS 232N.

OEAS 434/534. Geodynamics. 3 Credits. A qualitative and quantitative description of physical processes in the Earth and environmental sciences. Topics include stress and strain, plate elasticity and flexure, heat flow, fluid mechanics, material rheology, and groundwater flow. Emphasis will be placed on developing an understanding of Earth dynamics using real-world examples, including numerical exercises. Corequisite: PHYS 232N. Prerequisites: OEAS 111N, MATH 211, MATH 212, and PHYS 231N.
OEAS 435. Introduction to Ocean Modeling and Prediction. 3 Credits.
Introduction to concepts and theories of numerical ocean circulation models and their applications in physical oceanography, computational fluid dynamics, environmental problems and ocean forecast systems. Prerequisites: OEAS 405 or OEAS 306; permission of instructor or CEE 330.

OEAS 440/540. Biological Oceanography. 4 Credits.
Marine organisms and their relationship to physical and chemical processes in the ocean. Laboratory study of local marine organisms, marine ecosystem and sampling techniques. Includes identification, data analysis and field trips. Prerequisites: OEAS 106N, OEAS 126N or OEAS 306 and STAT 130M or STAT 310.

OEAS 441. Ocean and Earth Sciences Field Study I. 3 Credits.
Interdisciplinary investigation of selected sites in Southeast Virginia that includes field sampling, sample analyses, data interpretation and integration, and group report preparation and presentations. Focuses on development of research questions and site selection, field sampling, sample analyses and interpretation. Oral presentations of results will be made by each student. Prerequisites: OEAS 306 and OEAS 310; CHEM 123N and CHEM 124N, BIOL 123N or OEAS 303; PHYS 112N or PHYS 232N; MATH 212; STAT 310; all prerequisite courses must be passed with a grade of C or better.

OEAS 442W. Ocean and Earth Sciences Field Study II. 3 Credits.
Interdisciplinary investigation of selected sites in Southeast Virginia that includes field sampling, sample analyses, data interpretation and integration, and group report preparation and presentations. Focuses on site selection and evaluation mapping, sampling, and sample analyses. Oral presentations of results will be made by each student. This is a writing intensive course. Prerequisites: a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; OEAS 441.

OEAS 444. Communicating Ocean Science to Informal Audiences. 3 Credits.
This course provides Earth Science Education students with instruction on presenting scientific information to informal audiences (K through adult). The course provides techniques and practical experience in designing informal lessons. For Earth Science Education track students, OEAS 444 and OEAS 445 can replace OEAS 441/OEAS 442W. It is available as an elective for all other students. Prerequisites: OEAS 306 or OEAS 310.

OEAS 445. Communicating Ocean Science to Informal Audiences. 3 Credits.
This course provides Earth Science Education students with instruction on presenting scientific information to informal audiences (K through adult). Students will develop more in-depth presentations and extended practice presenting their materials on the Virginia Aquarium floor. For Earth Science Education track students, OEAS 444 and OEAS 445 can replace OEAS 441/OEAS 442W. It is available as an elective for all other students. Prerequisite: OEAS 444.

OEAS 446/546. Quaternary Geology. 3 Credits.
Geological effects of Cenozoic climate changes and tectonic movements on marine and terrestrial systems. Weekend field trips to study landscapes and deposits in the coastal plain and Appalachian provinces. Prerequisite: OEAS 344W.

OEAS 448/548. Population Ecology. 3 Credits.
This course uses conceptual and mathematical models to understand how populations grow and persist in space and time. Both plants and animals are discussed. Prerequisite: MATH 211.

OEAS 451/551. Data Collection and Analysis in Oceanography. 4 Credits.
This course introduces students to the basic oceanographic instruments used to obtain and analyze information by investigating different locations in the Chesapeake Bay. Data obtained with these instruments will be processed and analyzed using the data analysis techniques discussed in class. The data will then be used to answer a particular question related to the temporal and spatial variability in a natural system. Prerequisites: OEAS 306 or OEAS 310, MATH 211, MATH 212 and STAT 310.

OEAS 452. Microbial Ecology of the Oceans. 4 Credits.
This course studies the role that microbes play in biogeochemical cycling and food web dynamics in the oceans (the microbial loop). The course will include lectures, group discussions of primary literature, and laboratory exercises. Laboratory exercises will include traditional microbial ecology and molecular ecology. Students will learn skills useful to oceanography field work. Prerequisite: OEAS 306 or permission of the instructor.

OEAS 453/553. Marine Molecular Ecology. 4 Credits.
This course will explore the ecology of marine organisms using molecular techniques and data. Molecular ecology covers a wide variety of sub-disciplines, including genetics, physiology, ecology, and evolution. The course will explore basic theory in population genetics, ecology, and evolution and cover nucleic acid techniques and their applications. Prerequisite: BIOL 291 or BIOL 292 or BIOL 293 or BIOL 303 or BIOL 331 or OEAS 306.

OEAS 466W/566. Introduction to Mitigation and Adaptation Studies. 3 Credits.
Students will be introduced to the science underpinning mitigation of human-induced changes in the Earth system, including but not limited to climate change and sea level rise, and adaptation to the impacts of these changes. The course will cover the environmental hazards and the opportunities and limitations for conservation, mitigation and adaptation. This is a writing intensive course. Cross listed with BIOL 466W and IDS 466W. Prerequisite: BIOL 291 or permission of instructor.

OEAS 467/567. Sustainability Leadership. 3 Credits.
In this class, students will discover what makes a leader for sustainability. They will consider a range of global and local crises from a leadership point of view in the context of sustainability science, which addresses the development of communities in a rapidly changing social, economic, and environmental system-of-systems environment. The course will be based on taking a problem-motivated and solution-focused approach to the challenges considered. The course includes a service learning project focusing on a leadership experience in solving a real-world environmental problem. Prerequisite: BIOL 466W or OEAS 466W or IDS 466W.

OEAS 468W. Research Methods in Math and Sciences. 3 Credits.
Emphasizes the tools and techniques used to solve scientific problems. Topics include use and design of experiments, use of statistics to interpret experimental results, mathematical modeling of scientific phenomena, and oral and written presentation of results. Students will perform four independent inquiries, combining skills from mathematics and science to solve research problems. This is a writing intensive course. Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C and OEAS 306 or OEAS 310.

OEAS 487. Honors Research in Ocean and Earth Sciences. 1-3 Credits.
Supervised study in a field of individual interest. Research results are reported in a public oral presentation and a thesis. Prerequisite: senior standing and admission to the Academic Honors Program.

OEAS 488. Honors Research in Ocean and Earth Sciences. 1-3 Credits.
Supervised study in a field of individual interest. Research results are reported in a public oral presentation and a thesis. Prerequisite: senior standing and admission to the Academic Honors Program.

OEAS 490. Paleoceneography. 3 Credits.
This course will provide an overview of how marine sediments are used to reconstruct Earth’s climate history over the past 600 million years. Students will discuss the factors that control modern climate and explore how these variables led to cycles of greenhouse and icehouse worlds in the past. Finally, students will discuss how past and modern climate records can be used to predict future climate change. Prerequisites: general chemistry, OEAS 111N and OEAS 112N.

OEAS 495/595. Special Topics. 1-4 Credits.
Lectures, field and laboratory studies. An investigation of a selected problem in physical, geological, chemical, or biological oceanography. Prerequisites: junior standing and permission of the instructor.

OEAS 497. Special Problems and Research. 1-3 Credits.
Independent reading and study on a topic to be selected with the direction of an instructor. Prerequisite: junior standing.
OEAS 502. Field Experiences in Oceanography for Teachers, 3 Credits. Field and laboratory experiences in oceanography including hands-on experience using equipment and methods suitable for middle and secondary education professionals. Course will provide understanding of oceanic processes using simple field and laboratory experiments. Not available for credit for OEAS majors and minors. Prerequisite: background in K-12 Education.

OEAS 503. Aquatic Pollution, 3 Credits. This course will present basic ecological principles relevant to water pollution and ecotoxicology. Topics will include runoff, eutrophication, water and sewage treatment, industrial waste, oil pollution, pesticides, and plastics in the sea. Case studies provide focal points for consideration of issues in making decisions and setting policy. This is a writing intensive course.

OEAS 504. Environmental Physiology of Marine Animals, 3 Credits. Functional morphology and physiological aspects of growth and ecological energetics of marine animals. Basic concepts and habitat comparisons.

OEAS 505. Physical Oceanography, 3 Credits. Physics of the ocean: properties of seawater and their distribution; water mass formation; mass and energy flows; waves; tides; models; estuarine and coastal processes. An elective for science and engineering majors. Prerequisites: C or better in MATH 211 and either PHYS 232N or two semesters of hydraulics.

OEAS 506. Matlab, 1 Credit. This course is designed to introduce students to Matlab programming and to develop skills utilizing this program for data analysis. Prerequisite: C or better in MATH 211 or permission of instructor.


OEAS 510. Chemical Oceanography, 3 Credits. Chemical composition of the ocean and the chemical, biological, geological and physical processes controlling it.

OEAS 511. Structural Geology, 4 Credits. Recognition, habitat, and origin of deformed geologic structures. Relationships between structural patterns and tectonic settings. Laboratory sessions emphasize cartographic and stereographic projections, map interpretation, and hand sample evaluation. Weekend field trip required.

OEAS 512. Global Environmental Change, 3 Credits. An examination of the development of the earth as a habitable planet, from its origin to human impacts on global biogeochemical cycles on land, and in the oceans and atmosphere.

OEAS 513. Environmental Geochemistry, 3 Credits. Low temperature geochemistry of surface and near-surface materials and processes. Weathering and the geochemical cycle as influenced by environment.

OEAS 515. Waves and Tides, 3 Credits. Causes, nature, measurement and analysis of water waves and tides. Mathematical and graphical application to wave and tide problems. Prerequisites: C or better in MATH 212 and PHYS 232N or permission of the instructor.

OEAS 516. Electronics and Oceanographic Instrumentation, 3 Credits. The course will consist of brief lectures and hands-on laboratory exercises, in which students will learn to build, use, and debug electronic devices relevant to ocean and earth science applications. Topics covered will include circuit theory, power supplies and budgets, transducers and amplifiers, computerized data acquisition, instrument control, signal conditioning and resolution.

OEAS 518. Chemical Limnology, 3 Credits. Chemical cycling in lakes and reservoirs, and interactions with biological and physical processes; quantitative modeling of lake geochemistry.

OEAS 519. Spatial Analysis of Coastal Environments, 3 Credits. The course integrates remotely sensed and field techniques for scientific investigation and practical management of coastal environmental systems. Spatial modeling of coastal processes and management tools using geographic information system (GIS). Prerequisite: GEOG 504.

OEAS 520. Hydrogeology, 3 Credits. Topics covered will include the occurrence and movement of surface and subsurface water, the nature and distribution of permeable rocks and strata, field techniques used in ground-water studies, and the flow of ground-water to wells.

OEAS 526. Concepts in Oceanography for Teachers, 3 Credits. This web-based course will provide a practical introduction to oceanography for earth science teachers. It is particularly aimed at current science teachers attempting to become certified in earth science education. Topics will include discussions of geological, biological, physical and chemical oceanography. Not available for credit for OEAS majors and minors.

OEAS 530. Introduction to Geophysics, 3 Credits. Introduction to the physics of the earth, including plate tectonics, volcanism, earthquakes and seismology, gravity, the earth's magnetic field, geophysical remote sensing, and mantle convection.

OEAS 531. Sedimentary Petrology, 3 Credits. The chemical aspects of sediments and sedimentary rock needed for modern geologic and oceanographic studies. Optical petrology and x-ray diffraction are emphasized in the laboratory with particular attention to clay mineralogy. Field trip required.

OEAS 534. Geodynamics, 3 Credits. A qualitative and quantitative description of physical processes in the Earth and environmental sciences. Topics include stress and strain, plate elasticity and flexure, heat flow, fluid mechanics, material rheology, and groundwater flow. Emphasis will be placed on developing an understanding of Earth dynamics using real-world examples, including numerical exercises. Prerequisites: MATH 211, MATH 212, PHYS 231N, and PHYS 232N or equivalents.

OEAS 540. Biological Oceanography, 4 Credits. Marine organisms and their relationship to physical and chemical processes in the ocean. Laboratory study of local marine organisms, marine ecosystem and sampling techniques. Includes identification, data analysis and field trips.

OEAS 546. Quaternary Geology, 3 Credits. Geological effects of Cenozoic climate changes and tectonic movements on marine and terrestrial systems. Weekend field trips to study landscapes and deposits in the coastal plain and Appalachian provinces.

OEAS 548. Population Ecology, 3 Credits. This course uses conceptual and mathematical models to understand how populations grow and persist in space and time. Both plants and animals are discussed.

OEAS 551. Data Collection and Analysis in Oceanography, 4 Credits. This course introduces students to the basic oceanographic instruments used to obtain and analyze information by investigating different locations in the Chesapeake Bay. Data obtained with these instruments will be processed and analyzed using the data analysis techniques discussed in class. The data will then be used to answer a particular question related to the temporal and spatial variability in a natural system. Prerequisites: College level calculus and statistics (at least one semester of each).

OEAS 553. Marine Molecular Ecology, 4 Credits. This course will explore the ecology of marine organisms using molecular techniques and data. Molecular ecology covers a wide variety of sub-disciplines, including genetics, physiology, ecology, and evolution. The course will explore basic theory in population genetics, ecology, and evolution and cover nucleic acid techniques and their applications.
OEAS 667. Cooperative Education. 1-3 Credits.
Available for pass/fail grading only. May be repeated for credit. Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work experience is to take place. Prerequisites: approval by the department and Career Development Services in accordance with the policy for granting credit for Cooperative Education programs.

OEAS 669. Internship in Oceanography. 1-3 Credits.
1-3 credits. Prerequisite: permission of the department.

OEAS 690. Topics in Marine Environmental Policy. 3 Credits.
This course will give students a working understanding of how science policy decisions are made by governments and how science and technology impact public policy. This course seeks to integrate current policy/legislative initiatives with the underlying scientific issues in order to raise the student's appreciation for and understanding of the various influences that affect the decision-making process. In particular, the course will look at how science influences policy and assess the "state of the science"relative to the issues at stake.

OEAS 691. Seminar. 1 Credit.
Techniques for presenting scientific data at professional meetings and seminars. Practical experience and feedback.

OEAS 695. Special Topics in Oceanography. 1-3 Credits.
An advanced investigation in a selected problem in physical, geological, chemical, or biological oceanography under the direction of the faculty of the Department of Ocean, Earth and Atmospheric Sciences.

OEAS 696. Selected Topics. 1-3 Credits.
An advanced investigation in a selected problem in physical, geological, chemical, or biological oceanography under the direction of the faculty of the Department of Ocean, Earth and Atmospheric Sciences. Prerequisite: permission of the instructor.

OEAS 698. Research. 1-9 Credits.
Any semester; hours to be arranged; variable credit. 1-9 credits per semester. M.S.-level research.

OEAS 699. Thesis. 1-9 Credits.
Any semester; hours to be arranged; variable credit. 1-9 credits per semester. M.S.-level work primarily devoted to the writing of the thesis.

OEAS 703. Stability of Ocean Flow. 3 Credits.
A study of the basic ideas and methods used to examine the stability of ocean currents. Topics include fundametnals, barotropic and baroclinic instability, wave packets and energy balance. Prerequisites: calculus, differential equations, geo-physical fluid dynamics.

OEAS 704. Time Series in Oceanography. 3 Credits.
A study of the basic techniques used to model and analyze time series of oceanographic data. These include temporal spatial and frequency/wave number domain techniques. Prerequisite: calculus.

OEAS 708. Simulation Techniques for Ocean Circulation. 3 Credits.
Emphasis is on the construction of working ocean models, both vorticity-stream function and primitive equation models analyzed, mostly finite difference techniques, implicit and explicit schemes, staggered grids, discussion of ocean general circulation models. Prerequisites: OEAS 730, and knowledge of a computer program language (FORTRAN preferred).

OEAS 711. Regional Oceanography. 3 Credits.
The regional oceanography of the major ocean basins, marginal seas, and coastal oceans. Seasonal and interannual variability. Heat and salt cycles. Prerequisite: OEAS 604.

OEAS 723. Ocean Turbulence and Mixing Processes. 3 Credits.
This course will first provide a broad background in the concepts, theories and semi-analytical techniques used to describe turbulent motions and their effects in fluids. The various observational techniques that are presently used to measure turbulence in the ocean will be explored Prerequisites: OEAS 730 and OEAS 830.

OEAS 730. Dynamical Oceanography I. 3 Credits.
Dynamics of rotating stratified fluids. Inertial waves, equatorial dynamics, coastal dynamics, dynamic instability.

OEAS 732. Advanced Geochemistry of Marine Sediments. 3 Credits.
Advanced topics in the geochemistry of marine sediments, with an emphasis on mathematical modeling of sedimentary geochemical processes.

OEAS 733. Marine Microbiology. 3 Credits.
The course covers the distribution, abundance, and biogeochemical activities of microorganisms in the oceans, with emphasis on prokaryotic microbes and viruses. Symbioses with higher organisms, and applied aspects of marine microbiology, including biofouling and corrosion, invasive species, and marine biotechnology are also addressed.

OEAS 735. Paleoceanography. 3 Credits.
This course focuses on the causes (forcings) of climate change; natural response time of the climate system; interactions and feedbacks; and the geologic record in climate change.

OEAS 741. Fisheries Population Dynamics. 4 Credits.
An introduction to the major questions in the management of marine fisheries: abundance, estimation, distribution, recruitment and optimum yield. Topics are presented within the context of fisheries management, marine productivity and population ecology, all of which shape the direction of the primary literature.

OEAS 743. Applied Methods of Fisheries. 4 Credits.

OEAS 744. Fisheries Management. 3 Credits.
Quantitative methods for the description and management of fisheries. Analytical and empirical forecasting models used to study case histories of managed fish stocks. Case studies of poorly and well managed stocks.

OEAS 747. Reproduction and Larval Ecology of Marine Invertebrates. 3 Credits.
Topics include the evolution of reproductive strategies, maturation, behavior, larval ecology, and recruitment.

OEAS 755. Mathematical Modeling of Marine Ecosystems. 3 Credits.
This course is focused on the theory and techniques of mathematical model development for marine ecosystems. The course is designed to provide an understanding of how to parameterize interaction among components of marine food webs and interaction of food web components with physical environments.

OEAS 764. Coastal Sedimentology. 3 Credits.
Sedimentary processes in different coastal zones will be described: carbonate, evaporitic, and clastic depositional systems. We will conduct a small research project along the coast of Virginia. Field trip required.

OEAS 765. Marine Biogeochemistry. 3 Credits.
This class will focus on biologically mediated elemental cycling in aquatic systems. Assimilatory and dissimilatory biological processes involving auto- and heterotrophic organisms frequently mediate elemental cycling of these elements. Inorganic compounds and dissolved and particulate organic material will be discussed in terms of their biological reactivity and turnover times in aquatic systems and their contribution to elemental cycling on a variety of temporal and spatial scales. Also included is the issue of how community structure and function alter biogeochemical cycles.

OEAS 770. Aquatic Photosynthesis. 4 Credits.
This course examines the physics, chemistry, biology and ecology of photosynthesis by aquatic organisms. Topics include light harvesting, energy transfer, carbon metabolism and biosynthesis and their ecological consequences.

OEAS 772. Aquatic Optics. 4 Credits.
The course covers the physics of light transmission through the aquatic medium as affected by scattering and absorption, the optical properties of seawater, suspended particles of living cells, underwater vision and ocean color.
OEAS 795. Advanced Topics in Oceanography. 1-4 Credits.
An advanced investigation of a selected problem in physical, geological, chemical, or biological oceanography under the direction of the faculty of the Department of Ocean, Earth and Atmospheric Sciences.

OEAS 800. Survival Skills for Scientists. 1 Credit.
Seminar class each fall and spring that will address a series of topics to improve student success as scientists. Pass/fail grading.

OEAS 803. Stability of Ocean Flow. 3 Credits.
A study of the basic ideas and methods used to examine the stability of ocean currents. Topics include fundamentals, barotropic and baroclinic instability, wave packets and energy balance. Prerequisites: calculus, differential equations, geo-physical fluid dynamics.

OEAS 804. Time Series in Oceanography. 3 Credits.
A study of the basic techniques used to model and analyze time series of oceanographic data. These include temporal spatial and frequency/wave number domain techniques. Prerequisite: calculus.

OEAS 808. Simulation Techniques for Ocean Circulation. 3 Credits.
Emphasis is on the construction of working ocean models, both vorticity-stream function and primitive equation models analyzed, mostly finite difference techniques, implicit and explicit schemes, staggered grids, discussion of ocean general circulation models. Prerequisites: OEAS 730, and knowledge of a computer program language (FORTRAN preferred).

OEAS 811. Regional Oceanography. 3 Credits.
The regional oceanography of the major ocean basins, marginal seas, and coastal oceans. Seasonal and interannual variability. Heat and salt cycles. Prerequisite: OEAS 604.

OEAS 823. Ocean Turbulence and Mixing Processes. 3 Credits.
This course will first provide a broad background in the concepts, theories and semi-analytical techniques used to describe turbulent motions and their effects in fluids. The various observational techniques that are presently used to measure turbulence in the ocean will be explored Prerequisites: OEAS 730 and OEAS 830.

OEAS 830. Dynamical Oceanography II. 3 Credits.
Dynamics of rotating stratified fluids. Inertial waves, equatorial dynamics, coastal dynamics, dynamic instability.

OEAS 832. Advanced Geochemistry of Marine Sediments. 3 Credits.
Advanced topics in the geochemistry of marine sediments, with an emphasis on mathematical modeling of sedimentary geochemical processes.

OEAS 833. Marine Microbiology. 3 Credits.
The course covers the distribution, abundance, and biogeochemical activities of microorganisms in the oceans, with emphasis on prokaryotic microbes and viruses. Symbioses with higher organisms, and applied aspects of marine microbiology, including biofouling and corrosion, invasive species, and marine biotechnology are also addressed.

OEAS 840. Plankton Dynamics. 3 Credits.
This course emphasizes the ecology of heterotrophic plankton from bacteria to protists, from metazoan invertebrate plankton to fish larvae. Students will explore the role of plankton groups and species in the context of pelagic ecosystems. Planktonic processes are not only relevant for the ocean ecosystem but also for fisheries, aquaculture, environmental and human health, and global climate. The course consists of lectures, discussion groups on selected reading material, and laboratory demonstrations.

OEAS 841. Fisheries Population Dynamics. 4 Credits.
An introduction to the major questions in the management of marine fisheries: abundance, estimation, distribution, recruitment and optimum yield. Topics are presented within the context of fisheries management, marine productivity and population ecology, all of which shape the direction of the primary literature.

OEAS 843. Applied Methods of Fisheries. 4 Credits.

OEAS 844. Fisheries Management. 3 Credits.
Quantitative methods for the description and management of fisheries. Analytical and empirical forecasting models used to study case histories of managed fish stocks. Case studies of poorly and well managed stocks.

OEAS 847. Reproduction and Larval Ecology of Marine Invertebrates. 3 Credits.
Topics include the evolution of reproductive strategies, maturation, behavior, larval ecology, and recruitment.

OEAS 855. Mathematical Modeling of Marine Ecosystems. 3 Credits.
This course is focused on the theory and techniques of mathematical model development for marine ecosystems. The course is designed to provide an understanding of how to parameterize interaction among components of marine food webs and interaction of food web components with physical environments.

OEAS 864. Coastal Sedimentology. 3 Credits.
Sedimentary processes in different coastal zones will be described: carbonate, evaporitic, and clastic depositional systems. We will conduct a small research project along the coast of Virginia. Field trip required.

OEAS 865. Marine Biogeochemistry. 3 Credits.
This class will focus on biologically mediated elemental cycling in aquatic systems. Assimilatory and dissimilatory biological processes involving auto- and heterotrophic organisms frequently mediate elemental cycling of these elements. Inorganic compounds and dissolved and particulate organic material will be discussed in terms of their biological reactivity and turnover times in aquatic systems and their contribution to elemental cycling on a variety of temporal and spatial scales. Also included is the issue of how community structure and function alter biogeochemical cycles.

OEAS 869. Internship in Oceanography. 1-3 Credits.
1-3 credits. Prerequisite: permission of the department.

OEAS 870. Aquatic Photosynthesis. 4 Credits.
This course examines the physics, chemistry, biology and ecology of photosynthesis by aquatic organisms. Topics include light harvesting, energy transfer, carbon metabolism and biosynthesis and their ecological consequences.

OEAS 872. Aquatic Optics. 4 Credits.
The course covers the physics of light transmission through the aquatic medium as affected by scattering and absorption, the optical properties of seawater, suspended particles of living cells, underwater vision and ocean color.

OEAS 895. Advanced Topics in Oceanography. 1-4 Credits.
An advanced investigation of a selected problem in physical, geological, chemical, or biological oceanography under the direction of the faculty of the Department of Ocean, Earth and Atmospheric Sciences.

OEAS 898. Doctoral Research. 1-9 Credits.
Any semester; hours to be arranged; variable credit, 1-9 credits per semester. Ph.D.-level research.

OEAS 899. Dissertation. 1-9 Credits.
Any semester; hours to be arranged; variable credit, 1-9 credits per semester. Ph.D.-level work primarily devoted to the writing of the dissertation.