MSIM - Modeling and Simulation

MODELING AND SIMULATION Courses

MSIM 111. Information Literacy and Research for Modeling and Simulation Engineers. 2 Credits.
An introduction to methods and standards for locating and using information in the discipline of modeling and simulation engineering. Topics include: assessing information requirements; searching for, locating and evaluating information sources related to modeling and simulation; tools for managing, sharing, and presenting information; and ethical issues in the use of information. Students will complete exercises and research on topics involving information of interest to modeling and simulation engineers. Prerequisites: ENGN 110.

MSIM 201. Introduction to Modeling and Simulation Engineering. 3 Credits.
This is the first course for Modeling and Simulation Engineering (M&SE) students. M&SE discipline is surveyed at an overview level of detail. Topics include basic definitions, M&S paradigms and methodologies, applications, design processes, and human factors. Information literacy and research methods are addressed. Papers and oral presentations are required and allow the student to investigate different aspects of the discipline. The course provides a general conceptual framework for further M&SE studies. Pre- or corequisite: CS 150 and MATH 163.

MSIM 205. Discrete Event Simulation. 3 Credits.
An introduction to the modeling and simulation of discrete-state, event-driven systems. Topics include: basic properties and terminology for discrete event systems (DES); models for DES including queuing models, Petri nets, and state automata; and methodologies for simulating DES models. Investigation of the steps of a DES simulation study including problem formulation, conceptual model design, simulation model development, input data modeling, output data analysis, verification and validation, and design of simulation experiments. Corequisite: MSIM 281. Prerequisites: MSIM 201. Pre- or corequisite: STAT 330.

MSIM 281. Discrete Event Simulation Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development and application of discrete event simulation. Topics include an introduction to one or more discrete event simulation tools, common modeling constructs, data gathering and input data modeling, design of simulation experiments, output data analysis, and verification and validation. The design and implementation of a series of increasingly complex simulations of various discrete event systems are conducted. The laboratory is designed to accompany MSIM 205. Student written reports are required.

MSIM 320. Continuous Simulation. 3 Credits.
An introduction to the fundamentals of modeling and simulating continuous-state, time-driven systems. Topics include differential equation representation of systems, formulation of state variable equations, and numerical solution techniques including Taylor series, families of Runge-Kutta and Adams methods. Application domains considered include physical, biological, electrical systems, and real-time simulations. Corequisite: MSIM 382. Prerequisite: MSIM 201. Pre- or corequisite: MATH 307 (or MATH 280) and PHYS 227N or PHYS 232N.

MSIM 331. Simulation Software Design. 3 Credits.
Introduction to data structures, algorithms, programming methodologies, and software architectures in support of computer simulation. Topics include lists, queues, sets, trees, searching, sorting, reassemblable code, and order of complexity. Simulation structures developed include event lists, time management, and queuing models. Software models are implemented and tested. Corequisite: MSIM 383. Prerequisites: MSIM 205, CS 330 and CS 381.

MSIM 367. Cooperative Education. 1-3 Credits.
Student participation for credit based on the academic relevance of work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work is to take place. Prerequisites: approval by department and Career Development Services.

MSIM 368. Internship. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by department and Career Development Services.

MSIM 369. Practicum. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by the department and Career Development Services.

MSIM 382. Continuous Simulation Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development and application of continuous simulation. Topics include an introduction to one or more continuous simulation tools, modeling of various physics-based systems, and numerical solution of differential equations. The design and implementation of a series of increasingly complex simulations of various continuous systems are conducted. The laboratory is designed to accompany MSIM 320. Student written reports are required.

MSIM 383. Simulation Software Design Laboratory. 1 Credit.
A laboratory course designed to provide a hands-on introduction to the development of simulation software. Topics include data structures, algorithms, and simulation execution. The students will conclude with the development of a basic simulation executable capable of managing continuous event simulations. The laboratory is designed to accompany MSIM 331. Student written reports are required.

MSIM 395. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 396. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 406/506. Introduction to Distributed Simulation. 3 Credits.
An introduction to distributed simulation. Topics include motivation for using distributed simulation, distributed simulation architectures, time management issues, and distributed simulation approaches. Current standards for distributed simulation are presented. Prerequisites: MSIM 331.

MSIM 408/508. Introduction to Game Development. 3 Credits.
An introductory course focused on game development theory and modern practices with emphasis on educational game development. Topics include game architecture, computer graphics theory, user interaction, audio, high level shading language, animation, physics, and artificial intelligence. The developed games can run on a variety of computer, mobile, and gaming platforms. Prerequisites: CS 361 or MSIM 331.

MSIM 410/510. Model Engineering. 3 Credits.
The goal of this course is to develop understanding of the various modeling paradigms appropriate for capturing system behavior and conducting digital computer simulation of many types of systems. The techniques and concepts discussed typically include UML, concept graphs, Bayesian nets, Markov models, Petri nets, system dynamics, Bond graphs, etc. Students will report on a particular technique and team to implement a chosen system model. (cross-listed with ECE 410) Prerequisites: MSIM 205. Pre- or corequisite: MSIM 320.
MSIM 411/511. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are used to ensure that networks are able to defend themselves and the end-systems that use networks for data and information communication. Course will also discuss industry-standard network security protocols at application, socket, transport, network, VPN, and link layers, popular network security tools, security, performance modeling and quantification and network penetration testing. Discussion will be based on development of system level models and simulations of networked systems. Cross-listed with ECE 411. Prerequisites: CS 150 and junior standing or permission of the instructor.

MSIM 416/516. Cyber Defense Fundamentals. 3 Credits.
The objective of this course is to give an introduction of cyber hacking techniques, and defense mechanisms to detect and thwart cybercrime. Cyber attacks aim at compromising cyber systems to disclose information, alter data or operation, cause denial of service, etc. The course first reviews the attacks to wireless networks, such as WiFi and MANET, and the defense strategies and technologies developing system level models. Next, it reviews the attacks to general wired networks and information systems, and introduces the corresponding defense mechanisms. Last it discusses cyber defense security policies and architectures. Cross-listed with ECE 416. Prerequisites: ECE 355 or MSIM 470.

MSIM 417/517. Secure and Trusted Operating Systems. 3 Credits.
Course will review typical operating systems developing system models and identifying potential vulnerabilities. Course will discuss policies and their implementation required to fix such vulnerabilities to arrive at a secure and Trusted Computing Base. Course examines the security architecture Security Enhanced Linux (SELinux) Windows and Android OS. Cross-listed with ECE 417. Prerequisites: MSIM 470.

MSIM 419/519. Cyber Physical Systems Security. 3 Credits.
Cyber Physical Systems (CPSs) integrate computing, networking, and physical processes. CPSs are known for their ability to monitor the physical environment; use the monitored data in detecting the state of the physical environment; control the physical environment; and use cyber communications to perform its monitoring, detection, and control operations. One of the biggest challenges to these systems is the security of its cyber space. This course will cover topics in CPS applications, design issues, and security based on development of a system level model. Cross-listed with ECE 419. Prerequisites: CS 150.

MSIM 441/541. Computer Graphics and Visualization. 3 Credits.
The course provides a practical treatment of computer graphics and visualization with emphasis on modeling and simulation applications. It covers computer graphics fundamentals, visualization principles, and software architecture for visualization in modeling and simulation. Prerequisites: CS 250.

MSIM 451/551. Analysis for Modeling and Simulation. 3 Credits.
An introduction to analysis techniques appropriate to the conduct of modeling and simulation studies. Topics include input modeling, random number generation, output analysis, variance reduction techniques, and experimental design. In addition, techniques for verification & validation are introduced. Course concepts are applied to real systems and data. Prerequisites: MSIM 205 and STAT 330.

MSIM 462/562. Introduction to Medical Image Analysis. 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image registration, segmentation, feature extraction, and classification are discussed. Basic psychophysics, fundamental ROC analysis and FROC methodologies are covered. Cross-listed with ECE 462/ECE 562.

MSIM 463/563. Design and Modeling of Autonomous Robotic Systems. 3 Credits.
Course focuses on autonomous robotics systems with emphasis on using modeling and simulation (M&S) for system level design and testing. Fundamental concepts associated with autonomous robotic systems are discussed. Course topics include: robotic control, architectures, and sensors as well as more advanced concepts such as error propagation, localization, mapping and autonomy. Design strategies that leverage M&S to accelerate the development and testing of sophisticated autonomous robotic algorithms for individual or teams of robots are covered. Pre- or corequisites: CS 150.

MSIM 470/570. Foundations of Cyber Security. 3 Credits.
Course provides an overview of theory, tools and practice of cyber security and information assurance through prevention, detection and modeling of cyber attacks and recovery from such attacks. Techniques for security modeling, attack modeling, risk analysis and cost-benefit analysis are described to manage the security of cyber systems. Fundamental principles of cyber security and their applications for protecting software and information assets of individual computers and large networked systems are explored. Anatomy of some sample attacks designed to compromise confidentiality, integrity and availability of cyber systems are discussed. Pre- or corequisites: MSIM 410 or permission of the instructor.

MSIM 474/574. Transportation Data Analytics. 3 Credits.
This course presents the basic techniques for transportation data analytics. It will discuss statistical modeling, prominent algorithms, and visualization approaches to analyze both small- and large-scale data sets generated from transportation systems. Practices of using different data for various real-world traffic/transportation applications and decision making will also be discussed. Prerequisites: Basic probability and statistics (e.g., STAT 330); any programming language such as C, Python or Java is beneficial but not required.

MSIM 480/580. Introduction to Artificial Intelligence. 3 Credits.
Introduction to concepts, principles, challenges, and research in major areas of artificial intelligence. Areas of discussion include: natural language and vision processing, machine learning, machine logic and reasoning, robotics, expert and mundane systems. Laboratory work required. Prerequisite: Instructor approval.

MSIM 487W. Capstone Design I. 4 Credits.
Part one of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. This is a writing intensive course. Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; MSIM 410, MSIM 331, and MSIM 451.

MSIM 488. Capstone Design II. 3 Credits.
Part two of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. Prerequisites: MSIM 441 and MSIM 487W.

MSIM 495/595. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 496/596. Topics in Modeling and Simulation Engineering. 1-3 Credits.
Special topics of interest with emphasis placed on the recent developments in modeling and simulation engineering. Prerequisites: permission of the instructor.

MSIM 497/597. Independent Study in Modeling and Simulation Engineering. 3 Credits.
Individual analytical, computational, and/or experimental study in an area selected by the student. Supervised and approved by the advisor.

MSIM 506. Introduction to Distributed Simulation. 3 Credits.
An introduction to distributed simulation. Topics include motivation for using distributed simulation, distributed simulation architectures, time management issues, and distributed simulation approaches. Current standards for distributed simulation are presented.
MSIM 508. Introduction to Game Development. 3 Credits.
Requires an understanding of physics and either CS 361 or MSIM 331.
An introductory course focused on game development theory and modern
practices with emphasis on educational game development. Topics include
game architecture, computer graphics theory, user interaction, audio, high
level shading language, animation, physics, and artificial intelligence. The
developed games can run on a variety of computer, mobile, and gaming
platforms.

MSIM 510. Model Engineering. 3 Credits.
The goal of this course is to develop understanding of the various modeling
paradigms appropriate for capturing system behavior and conducting digital
computer simulation of many types of systems. The techniques and concepts
discussed typically include UML, concept graphs, Bayesian nets, Markov
models, Petri nets, system dynamics, Bond graphs, etc. Students will report
on a particular technique and team to implement a chosen system model.
(cross-listed with ECE 510).

MSIM 511. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are
used to ensure that networks are able to defend themselves and the end-
systems that use networks for data and information communication. Course
will also discuss industry-standard network security protocols at application,
socket, transport, network, VPN, and link layers, popular network security
tools, security, performance modeling and quantification and network
penetration testing. Discussion will be based on development of system level
models and simulations of networked systems. Cross-listed with ECE 511.

MSIM 516. Cyber Defense Fundamentals. 3 Credits.
The objective of this course is to give an introduction of cyber hacking
techniques, and defense mechanisms to detect and thwart cybercrime. Cyber
attacks aim at compromising cyber systems to disclose information, alter
data or operation, cause denial of service, etc. The course first reviews the
attacks to wireless networks, such as WiFi and MANET, and the defense
strategies and technologies developing system level models. Next, it
reviews the attacks to general wired networks and information systems, and
introduces the corresponding defense mechanisms. At last it discusses cyber
defense security policies and architectures. Cross-listed with ECE 516.

MSIM 517. Secure and Trusted Operating Systems. 3 Credits.
Course will review typical operating systems developing system models and
identifying potential vulnerabilities. Course will discuss policies and their
implementation required to fix such vulnerabilities to arrive at a secure and
Trusted Computing Base. Course examines the security architecture Security
Enhanced Linux (SELinux) Windows and Android OS. Cross-listed with
ECE 517.

MSIM 519. Cyber Physical Systems Security. 3 Credits.
Cyber Physical Systems (CPSs) integrate computing, networking, and
physical processes. CPSs are known for their ability to monitor the
physical environment; use the monitored data in detecting the state of
the physical environment; control the physical environment; and use
cyber communications to perform its monitoring, detection, and control
operations. One of the biggest challenges to these systems is the security
of its cyber space. This course will cover topics in CPS applications, design
issues, and security based on development of a system level model. Cross-
listed with ECE 519.

MSIM 541. Computer Graphics and Visualization. 3 Credits.
The course provides a practical treatment of computer graphics and
visualization with emphasis on modeling and simulation applications. It
covers computer graphics fundamentals, visualization principles, and
software architecture for visualization in modeling and simulation. Pre-
or corequisites: CS 250 and MSIM 603.

MSIM 551. Analysis for Modeling and Simulation. 3 Credits.
An introduction to analysis techniques appropriate to the conduct of
modeling and simulation studies. Topics include input modeling, random
number generation, output analysis, variance reduction techniques, and
experimental design. In addition, techniques for verification & validation are
introduced. Course concepts are applied to real systems and data.

MSIM 562. Introduction to Medical Image Analysis. 3 Credits.
Introduction to basic concepts in medical image analysis. Medical image
registration, segmentation, feature extraction, and classification are
discussed. Basic psychophysics, fundamental ROC analysis and FROC
methodologies are covered. Cross-listed with ECE 462/ECE 562.

MSIM 563. Design and Modeling of Autonomous Robotic Systems. 3
Credits.
Course focuses on autonomous robotics systems with emphasis on using
modeling and simulation (M&S) for system level design and testing.
Fundamental concepts associated with autonomous robotic systems are
discussed. Course topics include: robotic control, architectures, and sensors
as well as more advanced concepts such as error propagation, localization,
mapping and autonomy. Design strategies that leverage M&S to accelerate
the development and testing of sophisticated autonomous robotic algorithms
for individual or teams of robots are covered. Pre- or corequisite: CS 150.

MSIM 570. Foundations of Cyber Security. 3 Credits.
Course provides an overview of theory, tools and practice of cyber security
and information assurance through prevention, detection and modeling of
cyber attacks and recovery from such attacks. Techniques for security
modeling, attack modeling, risk analysis and cost-benefit analysis are
described to manage the security of cyber systems. Fundamental principles
of cyber security and their applications for protecting software and
information assets of individual computers and large networked systems
are explored. Anatomy of some sample attacks designed to compromise
confidentiality, integrity and availability of cyber systems are discussed. Pre-
or corequisites: MSIM 510 or permission of the instructor.

MSIM 574. Transportation Data Analytics. 3 Credits.
This course presents the basic techniques for transportation data analytics.
It will discuss statistical modeling, prominent algorithms, and visualization
approaches to analyze both small- and large-scale data sets generated from
transportation systems. Practices of using different data for various real-
world traffic/transportation applications and decision making will also be
discussed. Prerequisites: Basic probability and statistics (e.g., STAT 330);
any programming language such as C, Python or Java is beneficial but not
required.

MSIM 580. Introduction to Artificial Intelligence. 3 Credits.
Introduction to concepts, principles, challenges, and research in major areas
of artificial intelligence. Areas of discussion include: natural language and
vision processing, machine learning, machine logic and reasoning, robotics,
expert and mundane systems. Laboratory work required. Prerequisite:
Instructor approval.

MSIM 595. Topics in Modeling and Simulation Engineering. 3 Credits.
Special topics of interest with emphasis placed on recent developments in
modeling and simulation engineering.

MSIM 596. Topics in Modeling and Simulation Engineering, 1-3
Credits.
Special topics of interest with emphasis placed on the recent developments
in modeling and simulation engineering. Prerequisites: permission of the
instructor.

MSIM 597. Independent Study in Modeling and Simulation
Engineering. 3 Credits.
Individual analytical, computational, and/or experimental study in an area
selected by the student. Supervised and approved by the advisor.

MSIM 601. Introduction to Modeling and Simulation. 3 Credits.
Modeling and simulation (M&S) discipline surveyed at an overview level
of detail. Basic terminology, modeling methods, and simulation paradigms
are introduced. Applications of M&S in various disciplines are discussed.
The course provides a general conceptual framework for those interested
in using M&S and for further studies in M&S. Not open to MSVE degree
seeking students. Prerequisites: graduate standing; undergraduate exposure
to calculus and probability & statistics.
MSIM 602. Simulation Fundamentals. 3 Credits.
An introduction to the modeling and simulation discipline. Introduction to discrete event simulation (DES) including simulation methodology, input data modeling, output data analysis, and an overview of DES tools. Introduction to continuous simulation (CS) including simulation methodology, differential equation models, numerical solution techniques, and an overview of CS tools. Prerequisites: graduate standing; undergraduate preparation in calculus and probability & statistics; and computer literacy.

MSIM 603. Simulation Design. 3 Credits.
Course develops the computer software skills necessary for the design and development of simulation software. Topics cover all software architectures, software engineering, software design, object-oriented programming, abstract data types and classes, data structures, algorithms, and testing and debugging techniques. Software design and development of simulation systems (discrete-event, continuous, and Monte Carlo) are emphasized. Prerequisite: MSIM 602 and an introductory computer programming course.

MSIM 607. Machine Learning 1. 3 Credits.
Course provides a practical treatment of design, analysis, implementation and applications of algorithms. Topics include multiple learning models: linear models, neural networks, support vector machines, instance-based learning, Bayesian learning, genetic algorithms, ensemble learning, reinforcement learning, unsupervised learning, etc. (Cross listed with ECE 607).

MSIM 660. System Architecture and Modeling. 3 Credits.
Students will learn the essential aspects of the system architecture paradigm through environment and analysis of multiple architecture framework and enterprise engineering, such as IDDEO, TOGAF, DODAF and OPM. Emphasis on system modeling and enterprise engineering. (Cross listed with ENMA 660).

MSIM 667. Cooperative Education. 1-3 Credits.
Available for pass/fail grading only. Student participation for credit based on academic relevance of the work experience, criteria, and evaluation procedures as formally determined by the program and the Cooperative Education/Career Development Services program prior to the semester in which the work experience is to take place.

MSIM 668. Internship. 1-3 Credits.
Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students an opportunity to gain short duration career-related experience. Prerequisites: Approval by department and Career Development Services.

MSIM 669. Practicum. 1-3 Credits.
Academic requirements will be established by the graduate program director and will vary with the amount of credit desired. Allows students an opportunity to gain short-duration career related experience. Student is usually employed-this is an additional project beyond the duties of the student’s employment.

MSIM 670. Cyber Systems Engineering. 3 Credits.
This course provides an overview of functioning of cyber systems including how a computer interacts with the outside world. The composition of critical infrastructure and functioning of different engineered systems that form critical infrastructure are discussed. Mutual dependence and interactions between cyber systems and other engineered systems and the resulting security risks are also explored. (Cross-listed with ENMA 670.).

MSIM 673. Threat Modeling and Risk Analysis. 3 Credits.
This course discusses how to develop cyber threat models using attack graphs/trees, STRIDE, Universal Modeling Language (UML), attack graphs/trees and common of risk analysis tools. Course also discusses the need for quantitative security analysis and formal validation of security models and basic principles of formal model validation. (Cross-listed with ENMA 673.).

MSIM 695. Topics in Modeling and Simulation. 3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation.

MSIM 697. Independent Study in Modeling and Simulation. 3 Credits.
Individual study selected by the student. Supervised and approved by a faculty member with the approval of the graduate program director. Prerequisites: permission of instructor or graduate program director.

MSIM 699. Thesis. 1-6 Credits.
Research leading to the Master of Science thesis. Prerequisites: permission of instructor and graduate program director.

MSIM 702. Systemic Decision Making. 3 Credits.
As machine age problems have given way to systems age messes, the underlying complexity associated with understanding these situations has increased exponentially. Accordingly, the methods we use to address these situations must evolve as well. This course will introduce students to a method for thinking holistically about problems and messes conceptually founded in systems theory. This paradigm, known as systemic thinking, will be contrasted with traditional systematic thinking, and practical guidelines for the deployment of a systemic thinking approach will be provided. This paradigm will increase the student's ability to make rational decisions in complex environments. (Cross listed with ENMA 702/ENMA 802.).

MSIM 703. Optimization Methods. 3 Credits.
Covers advanced methods in Operations Research and Optimization. Focus will be on developing models and their applications in different domains including manufacturing and service. Modern optimization tools will be used to implement models for case studies, projects and research papers. The knowledge of programming and spreadsheets is expected. Contact instructor for more details. (Cross-listed with ENMA 703).

MSIM 711. Finite Element Analysis. 3 Credits.
The purpose of the course is to provide an understanding of the finite element method (FEM) as derived from an integral formulation perspective. The course will demonstrate the solutions of (1-D and 2-D) continuum mechanics problems such as solid mechanics, fluid mechanics and heat transfer. Prerequisites: permission of the instructor.

MSIM 715. High Performance Computing and Simulations. 3 Credits.
Introduction to modern high performance computing platforms including top supercomputers and accelerators. Discussion of parallel architectures, performance, programming models, and software development issues. Case studies of scientific and engineering simulations will be explored. Students will have an opportunity to work on parallelization of problems from their research areas. Project presentations are required.

MSIM 722. Cluster Parallel Computing. 3 Credits.
This course provides detailed numerical step-by-step procedures to exploit parallel and sparse computation under MPI (Message Passing Interface) computer environments. Large-scale engineering/science applications are emphasized. Simultaneous linear equations are discussed.

MSIM 725. Principles of Combat Modeling and Simulation. 3 Credits.

MSIM 730. Simulation Formalisms. 3 Credits.
The focus of the course is on identification and investigation of mathematical and logical structures that form the foundation for computational simulation. Topics include: foundations of simulation theory in logic, discrete mathematics, and computability; simulation formalisms, including DEVS; interoperability protocols; and computational complexity.

MSIM 741. Principles of Visualization. 3 Credits.
Well-designed graphical media capitalizes on human facilities for processing visual information and thereby improves comprehension, memory, inference, and decision making. This course teaches techniques and algorithms for creating effective visualizations based on principles and techniques from graphic design, visual art, perceptual psychology and cognitive science. Both users and developers of visualization tools and systems will benefit from this course.
MSIM 742. Synthetic Environments. 3 Credits.
The course covers the theory and techniques for building effective and efficient synthetic environments for modeling and simulation applications. Topics include physics, artificial intelligence, virtual reality, and advanced modeling and rendering. The emphasis is on producing visually realistic synthetic environments based on effective approximations of physics and other related principles. Prerequisites: MSIM 541 or equivalent.

MSIM 751. Advanced Analysis for Modeling and Simulation. 3 Credits.
An introduction to stochastic dependence and Bayesian analysis techniques for conducting modeling and simulation studies. Topics include: measures of dependence, common multivariate distributions, sampling from multivariate distributions, elementary time series models and Bayesian statistics. Prerequisites: MSIM 451 or MSIM 551.

MSIM 762. Applied Medical Image Analysis. 3 Credits.
Course explores hands-on exposure to state-of-the-art algorithms in medical image analysis, which builds on open-source software (Insight Segmentation and Registration Toolkit - ITK), as well as the principles of medical image acquisition in the modalities of clinical interest. Medical imaging modalities - X-rays, CT, and MR/ITK image pipeline; image enhancement, feature detection; segmentation - basic techniques, feature-based classification and clustering, graph cuts, active contour and surface models; surface and volume meshing; registration - transformations, similarity criteria; shape and appearance models are all explored and discussed in this course. Prerequisites: Knowledge of C++ and object-oriented programming.

MSIM 772. Modeling Global Events. 3 Credits.
Modeling Global Events introduces modeling and simulation as a tool for expanding our understanding of events that have shaped the global environment of the 21st century. Students will review real-world case studies and then analyze these case studies via system dynamics, agent-based, social network, and game theory modeling paradigms. This course is designed to develop empirical research skills, conceptual modeling expertise, and model construction. Students will understand how to analyze, verify, and validate a model.

MSIM 773. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are used to ensure that networks are able to defend themselves and the end-systems that use networks for data and information communication. Modeling of threats to networked systems, attack modeling with attack trees/graphs, cyber physical systems survivability to attacks, and behavior modeling of malware are explored. Network simulation/emulation using tools such as Scalable Simulation Framework (SSFNet), OPNET, or NS3 are examined. Application of industry-standard security protocols, such as, Secure Socket Layer (SSL), Transport Layer Security (TLS), IP-Security (IPSec), Public Key Infrastructure (PKI), WEP, WPA, etc. for engineering the security of networked systems will also be discussed.

MSIM 774. Transportation Network Flow Models. 3 Credits.
This course provides a rigorous introduction to transportation network modeling, with special emphasis on network equilibrium problems. Topics include: elementary graph theory, shortest path problem nonlinear optimization, optimization of univariate functions, deterministic and stochastic user equilibrium. (Cross-listed with CEE 774 and MSIM 774).

MSIM 775. Transportation Network Algorithms. 3 Credits.
Fundamental models and algorithms in optimization, stochastic modeling and parallel computing will be discussed and illustrated with transportation applications. (Cross-listed with CEE 775 and CEE 875).

MSIM 776. Simulation Modeling in Transportation Networks. 3 Credits.
Principles of simulation modeling, microscopic, mesoscopic, and macroscopic traffic simulation models. Course explores diver behavior in networks, calibration and validation of traffic simulation models, and use of traffic simulation software.

MSIM 780. Machine Learning II. 3 Credits.
Advanced topics in machine learning and pattern recognition systems. Data reduction techniques including principle component analysis, independent component analysis and manifold learning. Introduction to sparse coding and deep learning for data representation and feature extraction. (Cross-listed with ECE 780 and ECE 880). Prerequisite: MSIM 607 or equivalent.

MSIM 795. Topics in Modeling and Simulation. 3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation.

MSIM 797. Independent Study in Modeling and Simulation. 3 Credits.
Individual study selected by the student. Supervised and approved by a faculty member with the approval of the graduate program director. Prerequisites: permission of instructor or graduate program director.

MSIM 802. Systemic Decision Making. 3 Credits.
As machine age problems have given way to systems age messes, the underlying complexity associated with understanding these situations has increased exponentially. Accordingly, the methods we use to address these situations must evolve as well. This course will introduce students to a method for thinking holistically about problems and messes conceptually founded in systems theory. This paradigm, known as systemic thinking, will be contrasted with traditional systematic thinking, and practical guidelines for the deployment of a systemic thinking approach will be provided. This paradigm will increase the student's ability to make rational decisions in complex environments. (Cross listed with ENMA 702/ENMA 802).

MSIM 803. Optimization Methods. 3 Credits.
Covers advanced methods in Operations Research and Optimization. Focus will be on developing models and their applications in different domains including manufacturing and service. Modern optimization tools will be used to implement models for case studies, projects and research papers. The knowledge of programming and spreadsheets is expected. Contact instructor for more details. (Cross-listed with ENMA 803).

MSIM 811. Finite Element Analysis. 3 Credits.
The purpose of the course is to provide an understanding of the finite element method (FEM) as derived from an integral formulation perspective. The course will demonstrate the solutions of (1-D and 2-D) continuum mechanics problems such as solid mechanics, fluid mechanics and heat transfer. Prerequisites: permission of the instructor.

MSIM 815. High Performance Computing and Simulations. 3 Credits.
Introduction to modern high performance computing platforms including top supercomputers and accelerators. Discussion of parallel architectures, performance, programming models, and software development issues. Case studies of scientific and engineering simulations will be explored. Students will have an opportunity to work on parallelization of problems from their research areas. Project presentations are required.

MSIM 822. Cluster Parallel Computing. 3 Credits.
This course provides detailed numerical step-by-step procedures to exploit parallel and sparse computation under MPI (Message Passing Interface) computer environments. Large-scale engineering/science applications are emphasized. Simultaneous linear equations are discussed.

MSIM 825. Principles of Combat Modeling and Simulation. 3 Credits.

MSIM 830. Simulation Formalisms. 3 Credits.
The focus of the course is on identification and investigation of mathematical and logical structures that form the foundation for computational simulation. Topics include: foundations of simulation theory in logic, discrete mathematics, and computability; simulation formalisms, including DEVVS; interoperability protocols; and computational complexity.

MSIM 841. Principles of Visualization. 3 Credits.
Well-designed graphical media capitalizes on human facilities for processing visual information and thereby improves comprehension, memory, inference, and decision making. This course teaches techniques and algorithms for creating effective visualizations based on principles and techniques from graphic design, visual art, perceptual psychology and cognitive science. Both users and developers of visualization tools and systems will benefit from this course.
MSIM 842. Synthetic Environments. 3 Credits.
The course covers the theory and techniques for building effective and efficient synthetic environments for modeling and simulation applications. Topics include physics, artificial intelligence, virtual reality, and advanced modeling and rendering. The emphasis is on producing visually realistic synthetic environments based on effective approximations of physics and other related principles. Prerequisites: MSIM 541 or equivalent.

MSIM 851. Advanced Analysis for Modeling and Simulation. 3 Credits.
An introduction to stochastic dependence and Bayesian analysis techniques for conducting modeling and simulation studies. Topics include: measures of dependence, common multivariate distributions, sampling from multivariate distributions, elementary time series models and Bayesian statistics. Prerequisites: MSIM 451 or MSIM 551.

MSIM 862. Applied Medical Image Analysis. 3 Credits.
Course explores hands-on exposure to state-of-the-art algorithms in medical image analysis, which builds on open-source software (Insight Segmentation and Registration Toolkit - ITK), as well as the principles of medical image acquisition in the modalities of clinical interest. Medical imaging modalities - X-rays, CT, and MRI/ITK image pipeline; image enhancement, feature detection; segmentation - basic techniques, feature-based classification and clustering, graph cuts, active contour and surface models; surface and volume meshing; registration - transformations, similarity criteria; shape and appearance models are all explored and discussed in this course.

MSIM 872. Modeling Global Events. 3 Credits.
Modeling Global Events introduces modeling and simulation as a tool for expanding our understanding of events that have shaped the global environment of the 21st century. Students will review real-world case studies and then analyze these case studies via system dynamics, agent-based, social network, and game theory modeling paradigms. This course is designed to develop empirical research skills, conceptual modeling expertise, and model construction. Students will understand how to analyze, verify, and validate a model.

MSIM 873. Networked System Security. 3 Credits.
Course presents an overview of theory, techniques and protocols that are used to ensure that networks are able to defend themselves and the end-systems that use networks for data and information communication. Modeling of threats to networked systems, attack modeling with attack trees/graphs, cyber physical systems survivability to attacks, and behavior modeling of malware are explored. Network simulation/emulation using tools such as Scalable Simulation Framework (SSFNet), OPNET, or NS3 are examined. Application of industry-standard security protocols, such as, Secure Socket Layer (SSL), Transport Layer Security (TLS), IP-Security (IPSec), Public Key Infrastructure (PKI), WEP, WPA, etc. for engineering the security of networked systems will also be discussed.

MSIM 874. Transportation Network Flow Models. 3 Credits.
This course provides a rigorous introduction to transportation network modeling, with special emphasis on network equilibrium problems. Topics include: elementary graph theory, shortest path problem nonlinear optimization, optimization of univariate functions, deterministic and stochastic user equilibrium. (Cross-listed with CEE 774 and CEE 874).

MSIM 875. Transportation Network Algorithms. 3 Credits.
Fundamental models and algorithms in optimization, stochastic modeling and parallel computing will be discussed and illustrated with transportation applications. (Cross-listed with CEE 775 and CEE 875).

MSIM 876. Simulation Modeling in Transportation Networks. 3 Credits.
Principles of simulation modeling, microscopic, mesoscopic, and macroscopic traffic simulation models. Course explores driver behavior in networks, calibration and validation of traffic simulation models, and use of traffic simulation software.

MSIM 880. Machine Learning II. 3 Credits.
Advanced topics in machine learning and pattern recognition systems. Data reduction techniques including principle component analysis, independent component analysis and manifold learning. Introduction to sparse coding and deep learning for data representation and feature extraction. (Cross-listed with ECE 780 and ECE 880). Prerequisite: MSIM 607 or equivalent.

MSIM 892. Doctor of Engineering Project. 1-9 Credits.
Directed individual study applying advanced level technical knowledge to identify, formulate and solve a complex, novel problem in Modeling and Simulation.

MSIM 895. Topics in Modeling and Simulation. 3 Credits.
Special topics of interest with emphasis placed on recent developments in modeling and simulation.

MSIM 897. Independent Study in Modeling and Simulation. 1-3 Credits.
Individual study selected by the student. Supervised and approved by a faculty member with the approval of the graduate program director. Prerequisites: permission of the instructor or graduate program director.

MSIM 898. Research in Modeling and Simulation. 1-12 Credits.
Supervised research prior to passing Ph.D. candidacy exam. Prerequisites: permission of the instructor and graduate program director.

MSIM 899. Dissertation. 1-12 Credits.
Directed research for the doctoral dissertation. Prerequisites: permission of the instructor and graduate program director.

MSIM 998. Master's Graduate Credit. 1 Credit.
This course is a pass/fail course for master's students in their final semester. It may be taken to fulfill the registration requirement necessary for graduation. All master's students are required to be registered for at least one graduate credit hour in the semester of their graduation.

MSIM 999. Doctoral Graduate Credit. 1 Credit.
This course is a pass/fail course doctoral students may take to maintain active status after successfully passing the candidacy examination. All doctoral students are required to be registered for at least one graduate credit hour every semester until their graduation.

Doctoral Graduate Credit
MSIM 897 Directed individual study applying advanced level technical knowledge to identify, formulate and solve a complex, novel problem in Modeling and Simulation.

MSIM 898 Research in Modeling and Simulation. 1-12 Credits.
Supervised research prior to passing Ph.D. candidacy exam. Prerequisites: permission of the instructor or graduate program director.

MSIM 899 Dissertation. 1-12 Credits.
Directed research for the doctoral dissertation. Prerequisites: permission of the instructor and graduate program director.

MSIM 998 Master's Graduate Credit. 1 Credit.
This course is a pass/fail course for master's students in their final semester. It may be taken to fulfill the registration requirement necessary for graduation. All master's students are required to be registered for at least one graduate credit hour in the semester of their graduation.

MSIM 999 Doctoral Graduate Credit. 1 Credit.
This course is a pass/fail course doctoral students may take to maintain active status after successfully passing the candidacy examination. All doctoral students are required to be registered for at least one graduate credit hour every semester until their graduation.