Fundamentals of Cancer Biology. 3 Credits.
Course will cover molecular aspects of cancer including DNA damage, tumor viruses, cell cycle regulation, oncopgenes and tumor suppressor genes and their respective roles in cancer prevention/development, genes involved in promoting or inhibiting metastasis, angiogenesis, telomerases and telomerase, regulation of both apoptosis and autophagy in normal and cancer cells, cancer stem cells, and diagnostic screening assays for therapeutic responses or resistance in cancer patients. Prerequisites: MDTS 600 and MDTS 601 or equivalents; instructor approval also required.

Molecular Diagnostics Laboratory. 2.3 Credits.
Laboratory rotation with a pre-designated faculty member in which the student obtains hands-on experience. Designed for graduate students to sample different types of research models, techniques, and subject matter without the commitment of dissertation level involvement. Prerequisites: Graduate Program Director approval required.

Genomic Databases: Content, Curation, and Application to Biomedical Research. 3 Credits.
This course combines a didactic survey of topics important for understanding the origin, curation, advantages, and limitations of a variety of key genomic resources with hands-on training in the proper use of widely accessed public genome resources and common bioinformatic tools. Prerequisites: Graduate standing.

Chromosome Biology and Human Disease. 3 Credits.
Course goals are a comprehensive understanding of the mechanisms involved in chromosome function and how aberrations in these processes contribute to human disease. Topics include DNA repair and recombination; centromere and telomere dynamics, maintenance, and function; chromosome replication and segregation; control of cell division; dynamics of chromatin structure and function; epigenetics and gene expression; and long-range chromatin interactions and genome function. Prerequisites: MDTS 610, MDTS 611, or approval of instructor.

Stem Cells: Biology and Therapy. 3 Credits.
Topics to be covered include history of stem cell biology, molecular definitions for stem cell identification, methods for stem cell isolation including: adult and embryonic, current technologies for induced pluripotent stem cell reprogramming, stem cells in tissue engineering and regenerative medicine, and current and future stem cell applications. Prerequisites: MDTS 600 and MDTS 601 or equivalent.

Tissue Engineering. 3 Credits.
Topics to be covered include history of tissue engineering, development and morphogenesis, tissue structure, cells, scaffolds, regulators, and creating and evaluating a tissue engineering construct. Focus is on biomedical tissue engineering concepts as applied to creating human tissues in the laboratory for surgical repair of injured and diseased tissues and organs. Prerequisites: Graduate standing.

Molecular Genetics, Gene Function and Genomics. 3 Credits.
The goals of this course are a comprehensive understanding of the mechanisms involved in molecular genetics and gene function and in-depth exploration of modern experimental analyses of these processes. Topics include DNA replication, repair, and recombination; transcription; epigenetic regulation of transcription; chromatin structure; histone modifications, transcription factors, and regulatory RNAs; long-range chromatin interactions and gene regulation; post-transcriptional gene regulation and translation; molecular biology based experimental analysis of gene function; and experimental genomic approaches to gene regulation and gene function. Prerequisites: MDTS 600 and MDTS 601 or instructor approval.

Clinical Laboratory Internship. 3 Credits.
An optional three-week supervised rotation in a hospital-based molecular diagnostic laboratory or a molecular research laboratory. Prerequisites: MDTS 500, MDTS 501, MDTS 600, and MDTS 601 or permission of instructor.

Molecular Diagnostics Laboratory. 2.3 Credits.
Course will cover molecular aspects of cancer including DNA damage, tumor viruses, cell cycle regulation, oncopgenes and tumor suppressor genes and their respective roles in cancer prevention/development, genes involved in promoting or inhibiting metastasis, angiogenesis, telomerases and telomerase, regulation of both apoptosis and autophagy in normal and cancer cells, cancer stem cells, and diagnostic screening assays for therapeutic responses or resistance in cancer patients. Prerequisites: MDTS 600 and MDTS 601 or equivalents; instructor approval also required.

Advanced Molecular Diagnostics Laboratory. 3 Credits.
Course will cover 1) new applications of standard molecular diagnostic techniques and 2) cutting edge technologies, instrumentation and technical advances, both as applied to clinical case studies. Emphasis will be on pharmacogenomics and disease processes including inherited conditions, cancer, hematopathology, infectious diseases, mental retardation and developmental delay. Innovative technologies covered include comparative genomic hybridization, pyrosequencing and bead based assays Prerequisites: MLRS 500, MLRS 501 or permission of instructor.

Advanced Molecular Diagnostics Laboratory. 3 Credits.
Emphasis of this course will be on primer design for PCR, advanced real time PCR, cycle sequencing, capillary electrophoresis (CE) as applied to DNA sequencing, analysis of SNPs (single nucleotide polymorphisms), microsatellite instability, microarray technology and detection of methicillin-resistant bacteria. Prerequisites: MDTS 500, MDTS 501 or permission of instructor. Pre- or corequisites: MDTS 600.
MDTS 810. Molecular Basis of Health and Disease. 3 Credits.
Emphasis is on human genetic syndromes and disorders associated with
dysregulation of key signal transduction pathways that control gene
expression, cell growth and protein synthesis including the Ras/MAPK
pathway, tuberous sclerosis complex-mammalian target of rapamycin, PI3-
kinase and others. Diagnosis, screening and treatment will be covered.
Prerequisites: MDTS 600 and MDTS 601.

MDTS 814. Molecular Laboratory Rotation. 2,3 Credits.
Laboratory rotation with a pre-designated faculty member in which the
student obtains hands-on experience. Designed for graduate students to
sample different types of research models, techniques, and subject matter
without the commitment of dissertation level involvement. Prerequisites:
Graduate Program Director approval required.

MDTS 820. Genomic Databases: Content, Curation, and Application to
Biomedical Research. 3 Credits.
This course combines a didactic survey of topics important for
understanding the origin, curation, advantages, and limitations of a variety
of key genomic resources with hands-on training in the proper use of
widely accessed public genome resources and common bioinformatic tools.
Prerequisites: Graduate standing.

MDTS 830. Chromosome Biology and Human Disease. 3 Credits.
Course goals are a comprehensive understanding of the mechanisms
involved in chromosome function and how aberrations in these processes
contribute to human disease. Topics include DNA repair and recombination;
centromere and telomere dynamics, maintenance, and function; chromosome
replication and segregation; control of cell division; dynamics of chromatin
structure and function; epigenetics and gene expression; and long-range
chromatin interactions and genome function. Prerequisites: MDTS 610,
MDTS 611, or approval of instructor.

MDTS 840. Stem Cells: Biology and Therapy. 3 Credits.
Topics to be covered include history of stem cell biology, molecular
definitions for stem cell identification, methods for stem cell isolations
including: adult and embryonic, current technologies for induced pluripotent
stem cell reprogramming, stem cells in tissue engineering and regenerative
medicine, and current and future stem cell applications. Prerequisites:
MDTS 600 and MDTS 601 or equivalent.

MDTS 842. Tissue Engineering. 3 Credits.
Topics to be covered include history of tissue engineering, development and
morphogenesis, tissue structure, cells, scaffolds, regulators, and creating
and evaluating a tissue engineering construct. Focus is on biomedical tissue
engineering concepts as applied to creating human tissues in the laboratory
for surgical repair of injured and diseased tissues and organs. Prerequisites:
Graduate standing.

MDTS 850. Molecular Genetics, Gene Function and Genomics. 3
Credits.
The goals of this course are a comprehensive understanding of the
mechanisms involved in molecular genetics and gene function and in-
depth exploration of modern experimental analyses of these processes.
Topics include DNA replication, repair, and recombination; transcription;
epigenetic regulation of transcription; chromatin structure, histone
modifications, transcription factors, and regulatory RNAs; long-range
chromatin interactions and gene regulation; post-transcriptional gene
regulation and translation; molecular biology based experimental analysis of
gene function; and experimental genomic approaches to gene regulation and
gene function.

MDTS 891. Doctoral Seminar. 2 Credits.
Students attend seminars, attend a class on giving seminars, and present a
seminar on their own research.

MDTS 895. Topics in Molecular Medicine. 1 Credit.
Student led presentations of current topics related to molecular medicine.
Prerequisites: Instructor approval required.

MDTS 898. Molecular Biology Research. 3-6 Credits.
Supervised doctoral research in molecular diagnostics or biomedical studies.
Prerequisites: MLRS 600 or MDTS 600 and MLRS 601 or MDTS 601;
instructor approval required.