EET - Electrical Engineering Technology

ELECTRICAL ENGINEERING TECHNOLOGY Courses

EET 110. Electrical Circuits I. 3 Credits.
Fundamentals of electrical circuits including basic electrical parameters and variables, circuit laws and theorems, mesh analysis, node analysis, Thevenin’s and Norton’s Theorems, capacitance, inductance, magnetism, and elementary RC and RL transients. Prerequisite: MATH 162M.

EET 120. Logic Circuits and Microprocessors. 3 Credits.
An introduction to logic circuits, Boolean algebra, digital interface devices, combinational and sequential logic design, and microprocessor fundamentals. (Offered Fall.).

EET 125. Logic and Microprocessor Laboratory. 1 Credit.
Team-oriented experiments in basic combinational and sequential logic circuits and an introduction to fundamental microprocessors. (offered fall) Pre- or corequisite: EET 120.

EET 195. Topics. 1-3 Credits.
Study of selected topics.

EET 200. Electrical Circuits II. 3 Credits.
A continuation of EET 110 with emphasis on steady-state ac circuit analysis and applications. Topics include alternating current and voltage, phasors and complex numbers and their applications in circuit analysis, series and parallel resonance, complex power, and polyphase circuits. Prerequisites: MATH 163 and a grade of C or better in EET 110. (offered fall).

EET 205. Circuits Laboratory. 1 Credit.
Electrical laboratory instruction including test equipment, measurements, data analysis, verification of circuit laws, formal report preparation, and circuit construction. Pre- or corequisite: EET 200.

EET 210. Electronic Devices and Circuits I. 3 Credits.
Semiconductor properties and semiconductor devices including diodes, MOS field-effect transistors, junction field-effect transistors and bipolar junction transistors. The ideal operational amplifier and its applications. FET and BJT biasing, including constant current biasing, and amplifier circuits with emphasis on dc modeling and graphical analysis. Multisim simulation of circuit biasing. Prerequisites: EET 110.

EET 220. Electronic Devices and Circuits II. 3 Credits.
A continuation of EET 210. Small-signal analysis of transistor circuits emphasizing the hybrid - equivalent circuit. Analysis of high frequency effects in FETs and BJT and their effect on frequency response. Waveform generating and waveform modification circuits. High power devices and their applications, including power supplies and power amplifiers. Multisim simulation of circuit gain and frequency response. Prerequisites: EET 200 and EET 210.

EET 225. Electronics Laboratory. 1 Credit.
Practical design, construction, testing and troubleshooting of electronic circuits including single state and multistage amplifiers, power amplifiers, linear integrated circuits, and control devices. Prerequisite: EET 205. Pre- or corequisite: EET 220.

EET 261. Introduction to Microprocessors and Microcontrollers. 3 Credits.
Introduction of software and hardware that relates to PIC16FXXX 8 bit microprocessor and microcontroller architectures, interface circuitry, and system designs. Programming in controls of internal and external hardware/ peripherals, communication protocols between the logic circuits, peripherals, and MCUs. The ASM programming and design is the focus and C coding will also be introduced. Pre- or corequisite: EET 120.

EET 295. Topics. 1-3 Credits.
Study of selected topics.

EET 300. Advanced Circuit Analysis. 3 Credits.
General analysis of linear networks using classical methods, Laplace transforms and computer-aided methods. Topics include single element transients, first- and second-order circuits, transfer function analysis, and phasor analysis, Bode plots and waveform analysis. Circuit analysis software is used to supports the analytical methods. Prerequisites: MATH 211 and a grade of C or better in EET 200.

EET 305. Advanced Technical Analysis. 3 Credits.
Analytical and computational methods to support upper-division engineering technology courses. Topics include linear algebra, ordinary differential equations of engineering systems, elements of vector analysis, introductory statistical concepts, and software usage/development. MATLAB is used throughout the course to support all the topics. Prerequisites: a grade of C or better in MATH 211.

EET 310. Digital Electronics. 3 Credits.
First course in an upper division sequence in digital electronics circuits and systems. Topics include a comprehensive treatment of Boolean algebra, computer arithmetic, and applications of digital integrated circuits. Prerequisites: EET 120, EET 125, EET 205, and EET 210.

EET 312. Wireless Communications I. 4 Credits.
Overview of communications systems including both time and frequency domain analysis. Topics include spectrum analysis, analog modulation methods, digital modulation methods, receiver design, and cellular technology. Virtual laboratory projects utilizing simulation software. Prerequisites: EET 300 and EET 305.

EET 315. Digital Electronics Laboratory. 2 Credits.
Application oriented experiments and design problems in digital electronics. Prototype construction using wire-wrap methods will also be covered. Formal written reports will be required. Pre- or corequisite: EET 310.

EET 320. Advanced Microprocessors and Microcontrollers. 3 Credits.
This is the second course in the digital electronics course sequence. The course will focus on software/hardware design of microprocessors and microcontrollers in C under ARM M4 and PIC microcontrollers, interface circuitry, simulation, and system designs in CAD circuit layout. The focus will be on application of microprocessor-based systems design. Prerequisites: EET 261 and EET 310.

EET 325. Microprocessor Laboratory. 2 Credits.
Hands-on implementation of microprocessor and microcontroller systems and peripheral interfacing experiments. Emphasis is placed on the hardware and software design and firmware construction in embedded system applications. Pre- or corequisite: EET 320.

EET 330. Linear Electronics. 3 Credits.
General treatment of linear electronic circuits with emphasis on the operational amplifier and integrated circuits derived from it. Topics include various amplifier circuits and converters, integrators and differentiators, comparators, waveform generators, active filters, A/D and D/A converters, and regulators. Design of circuits to meet specifications. Circuit analysis software is used to validate some of the designs. Prerequisites: EET 220 and EET 300.

EET 335. Linear Electronics Laboratory. 2 Credits.
Design testing, and evaluation of “linear” electronic circuits and subsystems with primary emphasis on circuit components and modules. Measurement techniques, instrumentation and error analysis. Simulation of circuit designs using Multisim including transient response and frequency response. Pre- or corequisite: EET 330.

EET 340. Transmission Networks. 3 Credits.
Transmission line theory including both transients and steady-state conditions. Smith chart and its application to RF design. Introduction to electric and magnetic fields and plane wave propagation. Circuit analysis software is used to support the analytical methods. Prerequisite: EET 300.

EET 350. Fundamentals of Electrical Technology. 3 Credits.
A comprehensive course in electrical engineering technology for nonmajors. Major topics are basic electricity (AC and DC), circuit analysis, linear electronics and digital electronics. Not open to electrical engineering technology majors except as a substitute for EET 110 in special cases. Pre- or corequisite: MATH 211.
EET 355. Electrical Laboratory. 1 Credit.
Selected electrical laboratory topics for nonmajors including basic measurements, instrumentation, operational amplifiers, digital circuits, and rotating machines. Not open to electrical engineering technology majors. Pre- or corequisite: EET 350.

EET 360. Electrical Power and Machinery. 3 Credits.
A study of synchronous and asynchronous AC machinery, DC machinery, power distribution systems, and instrumentation. Prerequisite: EET 200 or EET 350.

EET 363. Introduction to PLC. 3 Credits.
Application oriented experiments and design problems in programmable controller setup and programming techniques with emphasis on practical applications. Networking PLCs and HMI. Computer assignments include ladder programs simulation. Students taking this course should not take EET 415. Prerequisite: EET 310 or EET 350.

EET 365W. Electrical Power and Machinery Laboratory. 2 Credits.
A laboratory course dealing with electrical power and machinery as covered in EET 360. Formal written reports will be required. This is a writing intensive course. Prerequisites: A grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C; EET 205 or EET 355. Pre- or corequisite: EET 360.

EET 366. Electrical Power and Machinery Laboratory. 1 Credit.
A laboratory course dealing with electrical power and machinery as covered in EET 360. Students taking this lab should not take EET 365W. Prerequisite: EET 205 or EET 355. Pre- or corequisite: EET 360.

EET 367. Cooperative Education. 1-3 Credits.
Available for pass/fail grading only. Student participation for credit based on the academic relevance of the work experience, criteria, and evaluative procedures as formally determined by the department and Career Development Services prior to the semester in which the work experience is to take place. Prerequisites: approval by the department and Career Development Services in accordance with the policy for granting credit for Cooperative Education programs.

EET 368. Internship. 1-3 Credits.
Available for pass/fail grading only. Academic requirements will be established by the department and will vary with the amount of credit desired. Allows students to gain short duration career-related experience. Prerequisites: approval by department and Career Development Services.

EET 369. Practicum. 1-3 Credits.
Available for pass/fail grading only. Prerequisites: approval by department and Career Development Services.

EET 370T. Energy and the Environment. 3 Credits.
A study of existing and new energy production methods, energy as a purchased/traded commodity, physics of energy, positive and negative implications for the environment, economics of energy alternatives, and resulting human/social impacts. Prerequisite: PHYS 101N or PHYS 101N or PHYS 226N or PHYS 231N.

EET 373. Instrumentation. 3 Credits.
Fundamental concepts of electro-mechanical devices used in mechatronics and automation control systems. The working principles, calibration, interfacing methods and control loops of analog and digital instrumentation devices in a process control system. The instrumentation devices, including sensors, actuators, signal conditioning circuits and data acquisition boards, will be used in class projects as basic feedback control blocks in practical simulation and PLC based mechatronics systems. The simulation projects will use PLC hardware, MATLAB and/or LabView software. Prerequisites: EET 210 and EET 363.

EET 395. Topics. 1-3 Credits.
Study of selected topics. Prerequisite: junior standing.

EET 396. Topics. 1-3 Credits.
Study of selected topics. Prerequisite: junior standing.

EET 400. CAD Electronics. 3 Credits.
An upper-division study of the fundamentals of electronic schematic capture, circuit simulation, and printed circuit board design using microcomputers. Schematic symbols, simulation models, and pcb modules are developed by the students. Prerequisites: EET 310, EET 320, and EET 325.

EET 405. Introduction to Local Area Networks. 3 Credits.
Design, installation, and management of PC based local area networks. Topics include network topology (Ethernet, token ring, FDDI, etc.), network interface card installation and configuration, client/server hardware, LAN/WAN concepts, bridges and routers, and software controls. Prerequisites: EET 320 and EET 325.

EET 410. Communication Principles. 3 Credits.
Fourier series and transforms, spectral analysis, signal transmission, analog modulation and detection methods, sampling theorem, pulse and digital modulation methods, and time-division and frequency-division multiplexing. Prerequisite: EET 300 or EET 350.

EET 412. Wireless Communications II. 3 Credits.
A continuation of EET 312. Topics include digital encoding techniques, signal-to-noise comparisons of different analog and digital modulation methods, link analysis, and satellite communication. System level simulations for determining subsystem design requirements and overall performance. Prerequisites: EET 312.

EET 415. Programmable Machine Controls. 3 Credits.
Application oriented experiments and design problems in programmable controller setup and programming techniques with emphasis on practical applications. Computer assignments include ladder programs simulation. Students taking this course should not take EET 363. Pre- or corequisite: EET 310 or EET 350.

EET 420. Advanced Logic Design. 3 Credits.
Advanced digital logic design and circuit reduction. Topics include lattice structure, symmetry recognition and simplification, threshold logic, design-for-testing techniques, shortest path test planning, adaptive testing, and fuzzy logic. Computer assignments include design simulation and testing. Prerequisite: EET 310.

EET 430. Automatic Control Systems. 3 Credits.
A study of modern control devices and applications including electrical, mechanical and pneumatic types. Prerequisites: EET 305, EET 330, EET 360, and EET 365W.

EET 440. High Frequency and Microwave Technology. 3 Credits.
Methods for generating, transmitting, and detecting signals in the VHF, UHF, and microwave frequency ranges. Laboratory will emphasize high frequency and microwave measurements including bridges, slotted lines, spectrum analyzers and reflectometers. Prerequisite: EET 340.

EET 450. Digital Control Systems. 3 Credits.
A study of modern digital control systems including the sampling process of linear systems, modeling of discrete systems, z-transforms, analysis of discrete systems, signal conversion, the digital computer as controller, feedback and cascade compensation, and hardware and software for digital control systems. Prerequisites: EET 305, EET 320, EET 325, and EET 330.

EET 460. Modern Communication Systems. 3 Credits.
Overview of the principles of satellite communications, television systems, fiber optics, antennas and other relevant topics. Prerequisite: EET 410.

EET 470. Microcontrollers/Embedded-Based Designs. 3 Credits.
Advanced embedded system designs. Topics focus in ADC, DAC, EEPROM External Memories, temperature sensor, digital RF wireless communications, communications in synchronous and asynchronous serial forms of SCI, SPI, & I2C, and parallel communication in system integration and design. The 32 bit ARM M4 in C code designs will be used in the course. Prerequisites: EET 310, EET 320, and EET 325.
EET 485. Electrical Power Systems. 3 Credits.
Fundamentals of electrical power transmission and distribution systems. Transformer operation/application, balanced/unbalanced loads, power factor correction, per-unit system system applications, fault calculations, power quality, over-current protection, relay construction/application, lighting system design, grounding, and introduction to the National Electric Code. Prerequisite: EET 360.

EET 490. Computer-Aided Circuit Simulation. 3 Credits.
Advanced treatment of computer-aided analysis software such as Multisim and MATLAB and the applications to electronic circuit analysis and design. Topics include non-linear models, distortion analysis, spectral analysis, and Monte Carlo techniques. Prerequisites: EET 300, EET 330, EET 335, and EET 340.

EET 495. Topics in Electrical Engineering Technology. 1-3 Credits.
Study of selected topics. Prerequisite: junior standing.

EET 496. Topics in Electrical Engineering Technology. 1-3 Credits.
Study of selected topics. Prerequisite: junior standing.