An introductory biology course for nonbiology majors. This course concentrates on major biological concepts concerning molecular biology, cellular biology, cellular reproduction, classical and molecular genetics, energetics, and ecology. This course would be beneficial to students pursuing elementary education degrees due to the discussion of biological topics included in the Virginia Standards of Learning. Cannot be substituted for BIOL 121N and BIOL 122N or BIOL 123N and BIOL 124N.

BIOL 106N. Biology for Nonscience Majors II. 4 Credits.
An introductory, non-sequential course for nonbiology majors focusing on scientific inquiry and the fundamental biological underpinnings of environmental science. The course concentrates on ecology, evolution, the nature of and threats to biodiversity, and conservation solutions. Cannot be substituted for BIOL 121N or BIOL 123N. BIOL 110N + BIOL 111N satisfy four credits of the University's Nature of Science general education requirement. Pre- or corequisite: BIOL 111N.

BIOL 110N. Introduction to Human Biology. 3 Credits.
An introductory lecture course for non-majors focusing on scientific inquiry and the structure and function of the human body with units on diet, nutrition, exercise, infectious disease, and cancer. Cannot be substituted for BIOL 122N or BIOL 124N. Pre- or corequisite: BIOL 118N.

BIOL 118N. Introduction to Human Biology Lab. 1 Credit.
An introductory lab course for non-majors focusing on scientific inquiry and the structure and function of the human body with units on diet, nutrition, exercise, infectious disease, and cancer. Cannot be substituted for BIOL 122N or BIOL 124N. Pre- or corequisite: BIOL 117N.

BIOL 121N. General Biology I. 3 Credits.
An introduction to the process of science, biological molecules, cell biology, metabolism, molecular biology, and Mendelian genetics. Students required to take BIOL 121N cannot earn credit for BIOL 105N, BIOL 106N, BIOL 110N, BIOL 112N, or BIOL 117N. Prerequisite: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher. Pre- or corequisite: BIOL 122N.

BIOL 122N. General Biology I Lab. 1 Credit.
A lab course emphasizing the process of science, biological molecules, cell biology, metabolism, molecular biology, and Mendelian genetics. Students required to take BIOL 122N cannot earn credit for BIOL 111N, BIOL 113N, or BIOL 118N. Prerequisites: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher. Pre- or corequisite: BIOL 121N.

BIOL 123N. General Biology II. 3 Credits.
An introduction to the process of science, evolutionary biology, ecology, and the basic biology of viruses, prokaryotes, and eukaryotes. Students required to take BIOL 123N cannot earn credit for BIOL 105N, BIOL 106N, BIOL 110N, BIOL 112N, or BIOL 117N. Prerequisites: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher, and BIOL 121N passed with a grade of C (2.0) or higher. Pre- or corequisite: BIOL 124N.

BIOL 124N. General Biology II Lab. 1 Credit.
A lab course emphasizing the process of science, evolutionary biology, ecology, and the basic biology of viruses, prokaryotes, and eukaryotes. Students required to take BIOL 124N cannot earn credit for BIOL 111N, BIOL 113N, or BIOL 118N. Prerequisite: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher, and BIOL 121N. Pre- or corequisite: BIOL 123N.

BIOL 136N. Honors General Biology I. 3 Credits.
This course is available only to students in the Honors College. An introduction to the process of science, biological molecules, cell biology, metabolism, molecular biology, and Mendelian genetics. Students required to take BIOL 136N cannot earn credit for BIOL 105N, BIOL 106N, BIOL 110N, BIOL 112N, or BIOL 117N. Prerequisites: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher, and enrollment in the Honors College. Pre- or corequisite: BIOL 137N.

BIOL 137N. Honors General Biology I Lab. 1 Credit.
This lab course is available only to students in the Honors College. This lab course emphasizes the process of science, biological molecules, cell biology, metabolism, molecular biology, and Mendelian genetics. Students required to take BIOL 137N cannot earn credit for BIOL 111N, BIOL 113N, or BIOL 118N. Prerequisites: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher, and enrollment in the Honors College. Pre- or corequisite: BIOL 136N.

BIOL 138N. Honors General Biology II. 3 Credits.
This course is available only to students in the Honors College. An introduction to the process of science, evolutionary biology, ecology, and the basic biology of viruses, prokaryotes, and eukaryotes. Students required to take BIOL 138N cannot earn credit for BIOL 105N, BIOL 106N, BIOL 110N, BIOL 112N, or BIOL 117N. Prerequisite: Placement into ENGL 110C and qualifying Math SAT/ACT score, or qualifying score on the Math placement test, or completion of MATH 102M or higher, and enrollment in the Honors College, and BIOL 136N. Pre- or corequisite: BIOL 139N.
BIOL 195. Biology Lab Topics. 1-3 Credits.
Laboratory topics.

BIOL 196. Topics. 1-3 Credits.
Topics in Biology.

BIOL 240. Fundamentals of Anatomy and Physiology I. 4 Credits.
This is the first of a two-part course that investigates the structure and function of the human body. Emphasis is on the basic organization of the body, biochemical composition, cellular structure, function, tissues and organs of the following systems: integumentary, skeletal, muscular, nervous, sensory and endocrine. In lab, students will study the interrelationship between structure and function of the human body using models, histological preparations, and human and feline anatomical specimens. Students with credit for BIOL 240 cannot receive credit for BIOL 250.

BIOL 241. Fundamentals of Anatomy and Physiology II. 4 Credits.
The second of a two-part course that investigates the structure and function of the human body. Emphasis is on the basic organization of the body, biochemical composition, cellular structure, function, tissues and organs of the following systems: cardiovascular, lymphatic, immune, respiratory, urinary, digestive, reproductive and human development. In lab, students will study the interrelationship between structure and function of the human body using models, histological preparations, and human and feline anatomical specimens. Students with credit for BIOL 241 cannot receive credit for BIOL 251. Prerequisites: BIOL 240 or permission of the instructor.

BIOL 250. Human Anatomy and Physiology I. 4 Credits.
This course emphasizes the gross anatomical relationships and the molecular, cellular, physiological, and metabolic process of the integument, musculoskeletal, neural, and immune systems. Students with credit for BIOL 250 cannot receive credit for BIOL 240.

BIOL 251. Human Anatomy and Physiology II. 4 Credits.
This course emphasizes the physiology and pathophysiology of the cardiac, pulmonary, renal, endocrine, and reproductive systems. Only BIOL 251 (4 credits) may count toward upper-division elective requirements for the Biology major. Students with credit for BIOL 251 cannot receive credit for BIOL 241.

BIOL 291. Ecology. 3 Credits.
An introduction to the basic concepts of ecology for both biology majors and nonmajors. The concepts are introduced with respect to terrestrial and aquatic environments. Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N must be passed with a grade of C or higher.

BIOL 292. Evolution. 3 Credits.
An introduction to the basic concepts of evolution for both biology majors and nonmajors. The concepts are introduced with respect to terrestrial and aquatic environments. Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N must be passed with a grade of C or higher.

BIOL 293. Cell Biology. 3 Credits.
A comprehensive course in the structural and functional features of cells, including prokaryotic and eukaryotic cells. The course will also examine biomacromolecules, techniques in cell and molecular biology, and current frontiers in cell biology research. Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N and CHEM 123N and CHEM 124N must be passed with a grade of C or higher.

BIOL 303. Genetics. 3 Credits.
An introduction to the principles of biological inheritance and variation and the molecular basis of gene structure and function. Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N must be passed with a grade of C or higher.

BIOL 307. Invertebrate Zoology. 4 Credits.
An examination of the invertebrate phyla with emphasis on classification, morphology, phylogeny, and general biology. Prerequisites: BIOL 292 must be passed with a grade of C or higher.

BIOL 308. Botany. 4 Credits.
A general introduction to the structure, function, ecology, and diversity of plants. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of C or higher.

BIOL 311. Global Change Biology. 3 Credits.
This course will emphasize the application of evolutionary and ecological principles such as species geographic range shifts, changes in phenology, acclimation, adaptation, and extinction in response to global environmental changes. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of "C" or higher.

BIOL 313. Introduction to Neuroanatomy. 4 Credits.
This course is designed to give students a comprehensive understanding of the structure and function of the human nervous system, with a major focus on neuroanatomy. The basic principles of cellular neuroscience, neurophysiology, as well as, the sensory and motor pathways will be discussed in detail. Clinically relevant applications will be discussed when relevant. The laboratory component of this course will use cadavers and human tissue to study head and neck structures. Prerequisites: BIOL 241 or BIOL 251 and BIOL 293 must be passed with a C (2.0) or better.

BIOL 314. Developmental Biology. 5 Credits.
An analysis of development in animals. Lectures will explore experimental approaches to the study of gametogenesis, fertilization, cleavage and morphogenesis. Laboratories will emphasize the morphological features of the developing vertebrate embryo. Prerequisites: BIOL 240 or BIOL 250 and BIOL 241 or BIOL 251 must be passed with a grade of C or higher. Pre- or corequisite: CHEM 211.

BIOL 315. General Microbiology. 5 Credits.
Designed to be a general survey of the nature and diversity of microorganisms (especially the bacteria but also including viruses and fungi), the roles and functions of microorganisms, and basic microbiological research. Laboratories emphasize fundamental techniques in culturing, studying and identifying microorganisms. Prerequisites: BIOL 293 and BIOL 303 must be passed with a grade of C or higher.

BIOL 322. Ethnobotany. 3 Credits.
A survey of plants used for food, fiber, medicine, dyes, perfumes, oils, and waxes. The role of plants in folklore and religion is included. A student research project with a written paper and presentation is required. Prerequisites: BIOL 292 AND BIOL 308 must be passed with a grade of C or higher.

BIOL 331. Marine Biology. 3 Credits.
A survey of the variety, ecology and adaptations of marine organisms. The course is designed to broadly introduce students to life in the oceans and the many special features of marine species that have evolved in the earth's oldest and most extensive ecosystem. Prerequisites: BIOL 291 must be passed with a grade of C (2.0) or higher.

BIOL 334. Field Ethnobotany. 4 Credits.
Identification, ecology, and uses of plants and mushrooms for food, oils, dyes, and cordage, based on collection and preparation of local materials. A field-intensive course with hands-on experience. A class project and presentation are required. Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C or higher.

BIOL 336. Vertebrate Zoology. 4 Credits.
This course will emphasize the organisms classified as vertebrates - fish, amphibians, reptiles, birds, and mammals - in addition to their evolutionary relatives. Detailed discussions of the changes that accompany this diversification of life will include topics in evolution, comparative anatomy, geology, and taxonomy. The lab will be a survey of specimens representing the major groups discussed in lecture. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of "C" or higher.
BIOL 340. Field Botany, 4 Credits.
A survey of plants and plant communities of the Mid-Atlantic Coastal Plain. Skills in plant and mushroom identification, specimen preparation, and research databases are emphasized. Most classes are field trips. Prerequisites: BIOL 291 must be passed with a grade of C (2.0) or higher.

BIOL 346. Plant Geography, 3 Credits.
The distribution and characteristics of major plant community types in North America are discussed. Abundant pictures are used to illustrate the flora and plant communities. Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C (2.0) or higher.

BIOL 350. Phage Discovery and Genomics I, 4 Credits.
This course is the first semester of a two-semester laboratory and scientific writing course designed to provide a unique undergraduate research experience. It focuses on the discovery of viruses (also known as bacteriophage or phage) that infect bacteria with an emphasis on laboratory techniques. Students will collect phage from environmental samples and learn the laboratory techniques required for the isolation, purification and propagation of viruses. Students will further characterize phage based on microscopy, molecular microbiology techniques, and nucleic acid sequencing. This course emphasizes independent research and additional time outside of the laboratory will be required for sample collection and analysis. This course also is designed to complement the MonarchTeach curriculum. Prerequisite: BIOL 303.

BIOL 351. Phage Discovery and Genomics II, 3 Credits.
This is the second course of a two-semester laboratory and scientific writing sequence that is designed to provide a unique research experience for undergraduate students. The second semester course is a continuation of the research on the phage project that was started in Phage Discovery and Genomics I (BIOL 350). The students will analyze the newly sequenced bacteriophage genome using bioinformatics tools with an emphasis on Genomics. The bioinformatics will be completed using computer software, mathematical modeling and presented in formal scientific laboratory reports and formal presentations. Upon successful completion of the year-long course, some students will be invited to participate in the SEA-PHAGE program coordinated by the Howard Hughes Medical Institute. The course is designed with an emphasis on independent research that could lead to a scientific publication. Prerequisites: BIOL 350 and BIOL 303 must be passed with a grade of “C” or higher.

BIOL 355. Stem Cell Biology, 3 Credits.
Tissue homeostasis requires the birth of new cells, typically derived from stem cells, as well as the removal of cells that are not needed or have become damaged. This course will focus on understanding the mechanisms by which new cells are generated and old or diseased cells are removed. The pathological consequences of failures in one or both of these key processes will be explored as well. Applications of stem cells to regenerative medicine will be considered in detail. Prerequisites: A grade of “C” or higher in BIOL 293.

BIOL 367. Cooperative Education, 1-3 Credits.
Student participation for credit in a paid work environment based on the academic relevance of the work experience as determined by the department and the Cooperative Education program, prior to the semester in which the work experience is to take place. Unstructured course. Students must identify a full-time biology faculty member with the expertise to determine if the cooperative education experience is appropriate for a biology curriculum, approve the learning contract, review the submitted assignments (student report and supervisor’s evaluation) and assign a P/F grade. (Qualifies as a CAP experience.) Prerequisites: approval by the department chair and Cooperative Education/Career Development Services.

BIOL 368. Internship, 1-3 Credits.
Supervised participation in non-research professional setting. Requires a minimum of 3 hours per week or equivalent for 1 credit, completion of work report and other documents relevant to the work experience, and supervisor evaluation. Unstructured course. Students must identify a full-time biology faculty member with the expertise to determine if the internship is appropriate for a biology curriculum, approve the learning contract, review the submitted assignments (student report and supervisor’s evaluation) and assign a P/F grade. (Qualifies as a CAP experience.) Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C (2.0) or higher, junior standing, and the approval of a full-time biology faculty member.

BIOL 369. Practicum, 1-3 Credits.
A supervised experience in a research, teaching, or a work/field setting and culminating in the preparation of a written document relevant to the practicum experience. Unstructured course. Students must identify a full-time biology faculty member with the expertise to determine if the practicum is appropriate for a biology curriculum, approve the learning contract, review the submitted assignments (student report and supervisor’s evaluation) and assign a P/F grade. (Qualifies as a CAP experience.) Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C (2.0) or higher, acceptance as a declared major, junior class status, and approval by the sponsoring full-time biology faculty member and the practicum coordinator.

BIOL 395. Topics, 1-3 Credits.
A structured specialty course designed to meet the needs of students in biology. Students are expected to perform at the level of other junior level classes. Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C or higher.

BIOL 400/500. Vascular Plant Families, 5 Credits.
An evolutionary survey of vascular plant families and the principles and methodologies that define them; emphasis is placed on recognition and skills of identification. A field intensive hands-on course. A research project including a written paper and presentation is required. Prerequisites: BIOL 292 and BIOL 308 with a C or better.

BIOL 401W/501. Entomology, 4 Credits.
A comprehensive survey of the insects, including taxonomy, morphology, physiology, reproductive and developmental biology, and ecology. Research techniques in entomology will be learned through both field and laboratory work. Writing skills will be learned through written summaries, essay exams, laboratory reports and research proposals. This is a writing intensive course. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of C (2.0) or higher.

BIOL 403/503, Medical Microbiology, 3 Credits.
This course integrates the disciplines of microbiology, immunology, and biochemistry with the pathophysiology of infections and the appropriate pharmacology in a problem-based learning setting. Students will learn the fundamental concepts and terminologies of infectious diseases. The material will be case studies in small group tutorials and emphasize independent learning. Prerequisites: BIOL 240 or BIOL 250, BIOL 315, and CHEM 441 must be passed with a grade of C or higher or instructor approval.

BIOL 404/504, Conservation Biology, 5 Credits.
The application of fundamental biological principles to the preservation of biodiversity, including the role of ecological and evolutionary theory to the preservation of biotas on a regional and global basis. Lectures will cover modern approaches to conservation biology, including conservation ethics and management issues. Laboratories will include discussion of case studies, introduction to software applicable to conservation biology, presentations by regional conservation practitioners, and visits to relevant field sites. Prerequisites: BIOL 291 must be passed with a grade of C or higher and junior standing or permission of instructor.
BIOL 405W. Biology Seminar. 3 Credits.
This course offers a capstone experience in scientific writing, faculty-mentored library research, the review and synthesis of material from the primary technical literature, and oral presentation. Students will develop a deeper understanding of the purposes and types of scientific writing, the structure and interpretation of technical papers, and the oral and written communication skills appropriate to the discipline. (This is a writing-intensive course.) Prerequisites: BIOL 291, BIOL 292, BIOL 293, and BIOL 303 and two 300- or 400-level elective courses, a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C, and CS 120G or CS 121G or CS 126G or HLTH 120G or IT 150G or STEM 251G.

BIOL 408/508. Introduction to Pharmacology. 4 Credits.
This is a general introductory course in pharmacology dealing with chemistry, general properties and pharmacological effects on various physiological systems, therapeutic usefulness and toxicities of drugs. The course is designed to prepare upper-level undergraduate and graduate students for more advanced courses in pharmacology. Prerequisites: BIOL 240 or BIOL 250, BIOL 293, and BIOL 303 must be passed with a grade of C or higher or permission of the instructor.

BIOL 409/509. Immunology. 3 Credits.
A comprehensive study of the phenomena of immune resistance, the cells and tissues involved in immune responses, and the consequences of immunization. Prerequisites: BIOL 293 and BIOL 303 must be passed with a grade of C or higher or permission of the instructor.

BIOL 411/511. Zymology: Fermentation Science. 4 Credits.
This is an introductory course in the theory and practice of zymology (fermentation). Edible and potable products of fermentation (beer, wine, mead, yogurt, cheese) have been known since antiquity and play an important role in today's society. The science of fermentation touches on many biological disciplines, such as microbiology and biochemistry, and the study of yeasts has provided considerable foundation to the fields of cell biology and molecular biology. In this course, we will cover fundamentals of fermentation and its practical application to production of beer, one of the oldest beverages produced by humans. Prerequisite: BIOL 293.

BIOL 412/512. Plant Physiology. 4 Credits.
A study of the physiological processes occurring in plants. A laboratory and greenhouse oriented course stressing plant nutrients, cell metabolism, respiration, photosynthesis, nitrogen metabolism, and plant hormones. Prerequisites: BIOL 292 must be passed with a grade of C or higher. Pre- or corequisite: BIOL 293 and CHEM 211.

BIOL 415W/515. Marine Ecology. 5 Credits.
A lecture and laboratory course designed to introduce students to important ecological processes occurring in marine environments; this is a writing-intensive course. The course covers synthetic topics as well as the ecology of specific marine habitats. The laboratory is designed to provide students with experience in marine research and the organisms and ecological conditions common in various marine habitats visited by the class. A field trip of several days over fall break is required. Prerequisites: BIOL 291 and BIOL 331 and ENGL 211C or ENGL 221C or ENGL 231C must be passed with a grade of "C" or higher; instructor approval required.

BIOL 416/516. Clinical Immunology. 3 Credits.
A description of common immunological problems seen in the clinic. Prerequisites: BIOL 409 must be passed with a grade of C or higher.

BIOL 419/519. Wetland Plants. 5 Credits.
A field-oriented course on the identification and ecology of aquatic and wetland plants with emphasis on plants used to delineate wetlands following federal guidelines. Activities include the use of identification databases, apps, and traditional floras, and monographs to develop identification skills using plants from the diversity of habitats in the region. A research project including a written paper and presentation is required. Prerequisites: BIOL 291 and BIOL 308 must be passed with a grade of "C" or higher.

BIOL 420/520. Ichthyology. 5 Credits.
The biology of marine and freshwater fishes including morphology, physiology, evolution, distribution, ecology, and reproduction. Prerequisites: BIOL 292 must be passed with a grade of C or higher and junior standing.

BIOL 422/522. Field Studies in Ornithology. 4 Credits.
A combined lecture and field study of birds with emphasis on identification, behavior, and field methods. Extensive field trips, including at least one weekend, are taken. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of C or higher or permission of the instructor.

BIOL 423W/523. Cellular and Molecular Biology. 3 Credits.
The molecular organization of eukaryotic cells is presented along with cell evolution, molecular genetics, the internal organization of the cell and the behavior of cells in multicellular organisms. Prerequisites: BIOL 293, BIOL 303, and a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C.

BIOL 424/524. Comparative Animal Physiology. 5 Credits.
An introduction to the basic mechanisms by which different animals function. How organisms acquire and use energy, regulate their internal environment, circulate and exchange gases and wastes, receive and conduct information about their environment, and move and use muscles will be some of the topics covered. Emphasis will be on how organisms make changes in these basic mechanisms to deal with different environmental conditions. Prerequisites: BIOL 292 must be passed with a grade of C or higher.

BIOL 425/525. Cancer Biology. 3 Credits.
This course will examine how mutation leads to altered gene products and expression, subverted cell activity, cell immortalization, and tumor formation. Students will explore the differences between benign tumors and malignant tumors as well as the factors involved in malignancy. The course will conclude with the exploration of current cancer therapy. Prerequisites: BIOL 293 and BIOL 303 must be passed with a grade of C or higher.

BIOL 426/526. Histology. 5 Credits.
The structure and function of cells, tissues and organs at both the light microscopic and ultrastructural levels. Prerequisites: BIOL 240 or BIOL 250 and BIOL 293 must be passed with a grade of C or higher.

BIOL 430W/530. Microbial Pathogenesis. 3 Credits.
Examination of bacterium-host interactions with an emphasis on how bacteria cause disease, particularly the means by which the bacterium is able to circumvent host defense mechanisms. Prerequisites: BIOL 315 and a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C.

BIOL 435/535. Marine Conservation Biology. 3 Credits.
This highly interdisciplinary science of conserving marine biodiversity will be taught through a review of old and new literature. This will include its history, marine ecology related to conservation biology, threats to marine biodiversity, assessment of extinction risk, conservation challenges of marine habitats and regions, and methods for conserving marine biodiversity. Prerequisites: BIOL 331 must be passed with a grade of C or higher.

BIOL 436W/536. Infectious Disease Epidemiology. 3 Credits.
This lecture/lab course will focus on concepts related to the spread and control of infectious diseases. The lectures will focus on concepts while the labs will provide quantitative skills essential to the study of infectious diseases. This course is also a writing-intensive course. Prerequisites: BIOL 291, and BIOL 292, and BIOL 293, and BIOL 303, and MATH 200 or MATH 163 or MATH 211 or MATH 205, and STAT 130M or STAT 310, and ENGL 231C or ENGL 221C or ENGL 211C; all must be passed with a grade of "C" or higher.

BIOL 437/537. One Health: People, Animals and the Environment. 3 Credits.
A course that examines the interdependence between human health, animal health and environmental health. The One Health approach to the threat of emerging infectious diseases includes understanding the interconnectedness of human and animal pathogens, epidemic zoonoses and corresponding environmental factors, insights into mechanisms of microbial evolution towards pathogenicity, new technologies and approaches towards disease surveillance, and political and bureaucratic strategies. Pre- or corequisite: BIOL 291, BIOL 292, BIOL 293, and BIOL 303; a Microbiology course is recommended.
BIOL 438/538. The Biology of Woody Plants. 4 Credits.
The study of trees and shrubs (dendrology), their identification, ecology, structure and anatomy, lore, and uses are emphasized in this field-oriented course. A research project including a written paper and presentation is required. Prerequisites: BIOL 308 or its equivalent must be passed with a grade of "C" or higher.

BIOL 441/541. Animal Behavior. 5 Credits.
Animal behavior with special attention to its evolution and ecological significance. Field and laboratory activities will emphasize the observational and experimental techniques used to study behavior. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of C or higher and junior standing or permission of the instructor.

BIOL 444/544. Field Studies in Marine Biology. 5 Credits.
An intensive study abroad field course offered during the summer at a foreign marine laboratory where students will be engaged in lectures and field studies of coastal marine environments. Check with the Director of the Marine Biology Concentration Program for details. Prerequisite: BIOL 331 must be passed with a grade of C or higher.

BIOL 445/545. Community Ecology. 3 Credits.
The goal of this course is to introduce and evaluate both classical and emerging paradigms in community ecology. This will be achieved by examining those processes (biotic and abiotic) that structure ecological communities and by exposing students to quantitative and theoretical aspects of these paradigms. Prerequisites: BIOL 291 must be passed with a grade of C or higher.

BIOL 446/546. Comparative Biomechanics. 3 Credits.
The principles of fluid and solid mechanics will be applied to a variety of plant and animal systems to understand how organisms deal with the immediate physical world and its accompanying constraints. A diverse range of topics will be covered, including aerial flight in insects, wind resistance in trees, jet propulsion in squid, flow within blood vessels, forces on intertidal organisms, viscoelasticity in biological materials, and energy storage during terrestrial movement. Prerequisites: BIOL 293 must be passed with a grade of C or higher. PHYS 111N and PHYS 112N are recommended.

BIOL 450/550. Principles of Plant Ecology. 4 Credits.
This course emphasizes the general theoretical concepts in plant ecology with statistical methods. The structure, development, processes, and history of plant communities are studied. Laboratories involve extensive fieldwork. A weekend field trip is required. Prerequisites: BIOL 291 must be passed with a grade of C or higher and senior standing.

BIOL 453/553. Molecular Ecology. 4 Credits.
This course will explore the biology of organisms by using molecular (nucleic acid and/or protein) techniques and data. It covers a wide variety of subdisciplines within Biology, including genetics, physiology, ecology, and evolution. This course will explore basic theory in population genetics, ecology, and evolution and cover DNA, RNA, and Protein techniques and their application to biological research. Prerequisites: BIOL 291, BIOL 292, BIOL 293, AND BIOL 303 all must be passed with a grade of C or higher.

BIOL 456/556. Population Genetics. 3 Credits.
An introduction to the principles of population genetics that addresses topics such as inheritance, genetic variation, fitness, natural selection, mutation, genetic drift, gene expression, and single- and multi-locus models of different types of selection. Human disease is addressed. Students will write a mock-grant proposal. Prerequisites: BIOL 303 must be passed with a grade of C or higher.

BIOL 457/557. General Virology. 3 Credits.
A basic course covering the history of virology, viral taxonomy, genetics, and the molecular biology and host responses to the major mammalian virus groups. Examples of recent impacts of viruses on human health such as influenza pandemics will also be covered. Prerequisites: BIOL 293 and BIOL 303 must be passed with a grade of C or higher.

BIOL 460/560. Frontiers in Nanoscience and Nanotechnology. 1 Credit.
Review of the structure, synthesis and properties of key nano-materials and their impact on living systems. Prerequisites: BIOL 293 must be passed with a grade of C or higher.

BIOL 461. Human Cadaver Dissection. 5 Credits.
Students will dissect a human cadaver fully and learn all of the major structures. The course will be divided into three sections: back and limbs, TAP (thorax, abdomen and pelvis), and head and neck. Instructor demonstrations include brain removal and dissection. Prerequisites: BIOL 241 or BIOL 251, or its equivalent, must be passed with a grade of C (2.0) or higher.

BIOL 462/562. Microbial Genetics. 3 Credits.
This course will emphasize the fundamental concepts of microbial genetics including the study of gene structure, gene regulation, operons, DNA replication, RNA biology, protein synthesis, plasmid biology, mobile genetic elements, and recombinant DNA technology. Prerequisites: BIOL 315 must be passed with a grade of C (2.0) or higher.

BIOL 463/563. Cell Signaling in Host Pathogen Interactions. 3 Credits.
This course will emphasize cell dynamics including host and pathogen induced cellular signaling, the regulation of actin cytoskeleton rearrangement, and the modulation of host transcription and translation by different pathogens. Prerequisite: BIOL 293.

BIOL 464/564. Biomedical Applications of Low Temperature Plasmas. 3 Credits.
This course is cross listed between ECE and Biology. It is intended for senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered. Prerequisites: Senior standing.

BIOL 465/565. Biotechnology. 3 Credits.
This course provides an overview of how microbes are manipulated to solve practical problems through biotechnology. Topics include basic concepts in microbial technology, industrial microbiology, microbes in drug development, food microbiology, microbial interactions, gut microbiota, and metagenomics. Prerequisites: BIOL 315 must be passed with a grade of "C" or higher or permission of instructor.

BIOL 466W/566. Introduction to Mitigation and Adaptation Studies. 3 Credits.
Students will be introduced to the science underpinning mitigation of human-induced changes in the Earth system, including but not limited to climate change and sea level rise, and adaptation to the impacts of these changes. The course will cover the environmental hazards and the opportunities and limitations for conservation, mitigation and adaptation. Cross listed with IDS 466W and OEAS 466W. Prerequisite: BIOL 291 or permission of instructor.

BIOL 467. Sustainability Leadership. 3 Credits.
In this class, students will discover what makes a leader for sustainability. They will consider a range of global and local crises from a leadership point of view in the context of sustainability science, which addresses the development of communities in a rapidly changing social, economic, and environmental system-of-systems environment. The course will be based on taking a problem-motivated and solution-focused approach to the challenges considered. The course includes a service learning project focusing on a leadership experience in solving a real-world environmental problem. Prerequisite: BIOL 466W or OEAS 466W or IDS 466W.
BIOL 468W. Research Methods in Mathematics and Science. 3 Credits.
Emphasizes the tools and techniques used to solve scientific problems.
Topics include use and design of experiments, use of statistics to interpret experimental results, mathematical modeling of scientific phenomena, and oral and written presentation of scientific results. Students will perform four independent inquiries, combining skills from mathematics and science to solve research problems. Required for Biology teaching licensure track; not available as upper-division elective in content area. (This is a writing intensive course.) Prerequisites: BIOL 307 or BIOL 308 or BIOL 315 or MATH 212 and ENGL 211C or ENGL 221C or ENGL 231C must be passed with a grade of C or higher or permission of instructor, and admission to Monarch Teach.

BIOL 470T/570. Diseases that Changed our World. 3 Credits.
Despite advancements in the development of antimicrobials and vaccines and in securing clear water and food supplies, modern civilizations are not immune to epidemic diseases. This course will provide insight into the role of different technologies in the struggle to attain disease control and eradication and explore the challenge of forecasting emerging plagues, describing the nature and evolution of diseases and conveying their significance in shaping Western culture and civilization, their impact, their consequences, their costs, and the lessons learned. Prerequisites: BIOL 291 and BIOL 293 must be passed with a grade of "C" or higher. Pre- or corequisite: BIOL 315.

BIOL 471W/571. Marine Vertebrate Ecology, Management & Conservation. 3 Credits.
Course will explore the biology, diversity and major life history patterns of a suite of marine megafauna, including sea turtles, marine mammals, seabirds and sharks. Students will determine the major drivers behind large-scale declines of many marine megafauna species and be challenged to understand and attempt to solve conservation and management issues. This is a writing intensive course, with a focus on the content and mechanics of scientific writing. Prerequisites: BIOL 291, BIOL 292, and ENGL 211C or ENGL 221C or ENGL 231C must be passed with a C (2.0) or higher. Pre- or corequisites: BIOL 331 OR OEAS 306.

BIOL 474/574. Mushrooms. 4 Credits.
This field oriented course emphasizes the identification, classification, ecology, culture, and uses of mushrooms and other fleshy fungi. Prerequisites: BIOL 308 must be passed with a grade of C or higher.

BIOL 475/575. Neurobiology. 3 Credits.
This course will focus on understanding brain structure as well as the morphology and function of the central nervous system in general. Fundamental processes such as neuron morphogenesis, guidance, polarity, migration, and growth cone motility will be emphasized. The cellular and molecular basis of neurological disorders also will be discussed. Prerequisites: BIOL 240 or BIOL 250 or BIOL 293 must be passed with a grade of "C" or higher or permission of instructor.

BIOL 478/578. Microbial Ecology. 3 Credits.
Study of the interactions between microorganisms, particularly bacteria, and their environment. Emphasis is placed on nutrient cycling and the influence of microbes on global mineral dynamics. The effects of physical and chemical factors on the distribution and activity of microbes in their environments and the applications (biotechnology) of these interactions are studied. Prerequisites: BIOL 315 must be passed with a grade of C or higher.

BIOL 479/579. Microbial Ecology Laboratory. 1 Credit.
A laboratory for measurement of microbial numbers and activity in natural environments. Pre- or corequisite: BIOL 478.

BIOL 480/580. Advanced Human Physiology Laboratory. 2 Credits.
A study of the cardiovascular, respiratory, nervous and digestive systems using mammals. Pre- or corequisite: BIOL 251 must be passed with a grade of C (2.0) or higher.

BIOL 481W/581. Forensic and Medical Entomology. 5 Credits.
This is a writing intensive course that provides a comprehensive survey of the insects used in legal investigations and medically important insects. Topics covered include the taxonomy, morphology, physiology, reproductive and developmental biology, and ecology of these insects along with the diseases they may vector. Research techniques in forensic and medical entomology will be learned through both field and laboratory activities. Prerequisites: BIOL 291 and BIOL 292 must be passed with a grade of C (2.0) or higher.

BIOL 482/582. Human and Veterinary Parasitology. 3 Credits.
The course will emphasize the principles of parasitism, including biology, physiology, genetics, morphology, and phylogeny of the major parasitic groups with a specific focus on the significant parasites of humans and animals of veterinary importance. The general biology of parasites including their life cycles, diagnosis, and treatment will be included as well. Prerequisites: BIOL 293 and BIOL 303 must be passed with a grade of C or higher or permission of instructor.

BIOL 487. Honors Research in Biology. 4 Credits.
Independent study and scheduled meetings with faculty advisor. Supervised independent study in an area of individual interest in biology. The work in this course results in the production of a thesis. (qualifies as a CAP experience) Prerequisites: admission to the Honors Program and senior standing.

BIOL 488W. Honors Research in Biology. 4 Credits.
Independent study and scheduled meetings with faculty advisor. Supervised independent study in an area of individual interest in biology. The work in this course results in the production of a thesis. (This is a writing intensive course.) (qualifies as a CAP experience) Prerequisites: BIOL 487, admission to the Honors Program, senior standing, and a grade of C or better in ENGL 211C or ENGL 221C or ENGL 231C.

BIOL 490/590. Advanced Human Physiology. 4 Credits.
All major physiological systems will be examined with an emphasis on normal physiology. Some clinical applications will be discussed. Prerequisites: BIOL 241 or BIOL 251 must be passed with a grade of C (2.0) or higher.

BIOL 496/596. Topics. 1-3 Credits.
A specially designed, structured course concerning specific topics in the biological, environmental, or allied health fields. Prerequisites: BIOL 123N and BIOL 124N must be passed with a grade of C (2.0) or higher, junior standing, and permission of instructor.

BIOL 497. Undergraduate Research. 1-3 Credits.
The student performs laboratory and/or field research under the supervision of a Department of Biological Sciences faculty member. The student must devote a minimum of 3 hours per week for the equivalent of 1 credit. The student must maintain lab/field notes, must submit a written report, may be required to give an oral presentation, and must be evaluated by the faculty supervisor. If 3 credits are taken, then BIOL 497 counts as an upper-level biology elective course with a laboratory or field component (qualifies as a CAP experience). Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N must be passed with a grade of C or higher, junior standing, permission of the supervising faculty member, and permission of the Chief Departmental Advisor and Chair of the Department of Biological Sciences.

BIOL 498/598. Independent Study. 1-3 Credits.
This unstructured course is based on a supervised project, without a laboratory or field component, that is selected to suit the needs of the individual student. The completion of a formal scientific paper documented with the appropriate primary technical literature is required. An oral presentation also may be required. Contact the Chief Departmental Advisor for details. Prerequisites: BIOL 123N and BIOL 124N or BIOL 138N and BIOL 139N must be passed with a grade of C or higher; junior standing, permission of the supervising faculty member, permission of the Chief Departmental Advisor, and permission of the Chair of the Department of Biological Sciences also are required.
BIOL 500. Vascular Plant Families. 5 Credits.
An evolutionary survey of vascular plant families and the principles and methodologies that define them; emphasis on recognition and skills of identification. A field intensive hands-on course. A research project including a written paper and presentation is required. Prerequisites: A botany course.

BIOL 501. Entomology. 4 Credits.
A comprehensive survey of the insects, including taxonomy, morphology, physiology, reproductive and developmental biology, and ecology. Research techniques in entomology will be learned through both field and laboratory work.

BIOL 503. Medical Microbiology. 3 Credits.
This course integrates the disciplines of microbiology, immunology, and biochemistry with the pathophysiology of infections and the appropriate pharmacology in a problem-based learning setting. Students will learn the fundamental concepts and terminologies of infectious diseases. The material will be case studies in small group tutorials and emphasize independent learning. Prerequisites: Microbiology and Biochemistry courses, anatomy course recommended, or instructor approval.

BIOL 504. Conservation Biology. 5 Credits.
The application of fundamental biological principles to the preservation of biodiversity, including the role of ecological and evolutionary theory to the preservation of biota on a regional and global basis. Lectures will cover modern approaches to conservation biology, including conservation ethics and management issues. Laboratories will include discussion of case studies, introduction to software applicable to conservation biology, presentations by regional conservation practitioners, and visits to relevant field sites.

BIOL 508. Introduction to Pharmacology. 4 Credits.
This is a general introductory course in pharmacology dealing with chemistry, general properties and pharmacological effects on various physiological systems, therapeutic usefulness and toxicities of drugs. The course is designed to prepare upper-level undergraduate and graduate students for more advanced courses in pharmacology.

BIOL 509. Immunology. 3 Credits.
A comprehensive study of the phenomena of immune resistance, the cells and tissues involved in immune responses, and the consequences of immunization. Prerequisites: permission of the instructor.

BIOL 511. Zymology: Fermentation Science. 4 Credits.
This is an introductory course in the theory and practice of zymology (fermentation). Edible and potable products of fermentation (beer, wine, mead, yogurt, cheese) have been known since antiquity and play an important role in today’s society. The science of fermentation touches on many biological disciplines, such as microbiology and biochemistry, and the study of yeasts has provided considerable foundation to the fields of cell biology and molecular biology. In this course, we will cover fundamentals of fermentation and its practical application to production of beer, one of the oldest beverages produced by humans. Prerequisite: BIOL 293.

BIOL 512. Plant Physiology. 4 Credits.
A study of the physiological processes which occur in plants. A laboratory and greenhouse oriented course stressing plant nutrients, cell metabolism—respiration, photosynthesis, nitrogen metabolism, and plant hormones.

BIOL 515. Marine Ecology. 5 Credits.
A lecture and laboratory course designed to introduce students to important ecological processes operating in coastal marine environments. The course covers synthetic topics as well as the ecology of specific marine habitats. The laboratory is designed to provide students with experience in marine research and the organisms and ecological conditions common in various marine habitats visited by the class. A field trip of several days over fall break is required. Prerequisites: BIOL 291 and BIOL 331 and ENGL 211C or ENGL 221C or ENGL 231C must be passed with a grade of "C" or higher; instructor approval required.

BIOL 516. Clinical Immunology. 3 Credits.
A description of common immunological problems seen in the clinic. Prerequisites: BIOL 509.

BIOL 519. Wetland Plants. 5 Credits.
A field-oriented course on the identification and ecology of aquatic and wetland plants with emphasis on plants used to delineate wetlands following federal guidelines. Activities include the use of identification databases, apps, and traditional floras, and monographs to develop identification skills using plants from the diversity of habitats in the region. A research project including a written paper and presentation is required. Prerequisites: A botany course.

BIOL 520. Ichthyology. 5 Credits.
The biology of marine and freshwater fishes including morphology, physiology, evolution, distribution, ecology, and reproduction.

BIOL 522. Field Studies in Ornithology. 4 Credits.
A combined lecture and field study of birds with emphasis on identification, behavior, and field methods. Extensive field trips, including at least one weekend, are taken.

BIOL 523. Cellular and Molecular Biology. 3 Credits.
The molecular organization of eukaryotic cells is presented along with cell evolution, molecular genetics, the internal organization of the cell and the behavior of cells in multicellular organisms. Prerequisites: course background in cell biology and genetics or permission of the instructor.

BIOL 524. Comparative Animal Physiology. 5 Credits.
An introduction to the basic mechanisms by which different animals function. How organisms acquire and use energy, regulate their internal environment, circulate and exchange gases and wastes, receive and conduct information about their environment, and move and use muscles will be some of the topics covered. Emphasis will be on how organisms make changes in these basic mechanisms to deal with different environmental conditions.

BIOL 525. Cancer Biology. 3 Credits.
This course will examine how mutation leads to altered gene products and expression, subverted cell activity, cell immortalization, and tumor formation. Students will explore the differences between benign tumors and malignant tumors as well as the factors involved in malignancy. The course will conclude with the exploration of current cancer therapy. Prerequisites: Cell Biology and Genetics courses.

BIOL 526. Histology. 5 Credits.
The structure and function of cells, tissues and organs at both the light microscopic and ultrastructural levels.

BIOL 530. Microbial Pathogenesis. 3 Credits.
Examination of bacterium-host interactions with an emphasis on how bacteria cause disease, particularly the means by which the bacterium is able to circumvent host defense mechanisms Prerequisites: microbiology course.

BIOL 535. Marine Conservation Biology. 3 Credits.
This highly interdisciplinary science of conserving marine biodiversity will be taught through a review of old and new literature. This will include its history, marine ecology related to conservation biology, threats to marine biodiversity, assessment of extinction risk, conservation challenges of marine habitats and regions, and methods for conserving marine biodiversity.

BIOL 536. Infectious Disease Epidemiology. 3 Credits.
This lecture/lab course will focus on concepts related to the spread and control of infectious diseases. The lectures will focus on concepts while the labs will provide quantitative skills essential to the study of infectious diseases. Prerequisites: Undergraduate coursework in statistics and biology.

BIOL 537. One Health: People, Animals and the Environment. 3 Credits.
A course that examines the interdependence between human health, animal health and environmental health. The One Health approach to the threat of emerging infectious diseases includes understanding the interconnectedness of human and animal pathogens, epidemic.zoonoses and corresponding environmental factors, insights into mechanisms of microbial evolution towards pathogenicity, new technologies and approaches towards disease surveillance, and political and bureaucratic strategies. Pre- or corequisite: A Microbiology course is recommended.
BIOL 538. The Biology of Woody Plants. 4 Credits.
The study of trees and shrubs (dendrology), their identification, ecology, structure and anatomy, lore, and uses are emphasized in this field-oriented course. A research project including a written paper and presentation is required. Prerequisite: A grade of "C" or higher in a botany course.

BIOL 541. Animal Behavior. 5 Credits.
Animal behavior with special attention to its evolution and ecological significance. Field and laboratory activities will emphasize observational and experimental techniques used to study behavior.

BIOL 544. Field Studies in Marine Biology. 5 Credits.
An intensive study abroad field course offered during the summer at a foreign marine laboratory where students will be engaged in lectures and field studies of coastal marine environments. Check with the Director of the Marine Biology Concentration Program for details. Prerequisite: BIOL 331.

BIOL 545. Community Ecology. 3 Credits.
The goal of this course is to introduce and evaluate both classical and emerging paradigms in community ecology. This will be achieved by examining those processes (biotic and abiotic) that structure ecological communities, and by exposing students to quantitative and theoretical aspects of these paradigms. Prerequisites: Ecology course.

BIOL 546. Comparative Biomechanics. 3 Credits.
The principles of fluid and solid mechanics will be applied to a variety of plant and animal systems to understand how organisms deal with the immediate physical world and its accompanying constraints. A diverse range of topics will be covered, including aerial flight in insects, wind resistance in trees, jet propulsion in squid, flow within blood vessels, forces on intertidal organisms, viscoelasticity in biological materials, and energy storage during terrestrial movement. Prerequisites: Cell biology course and physics course recommended.

BIOL 550. Principles of Plant Ecology. 4 Credits.
Course covers the general theoretical concepts in plant ecology with statistical methods. The structure, development, processes, and history of plant communities are studied. Laboratories involve extensive fieldwork. A weekend field trip is required.

BIOL 553. Molecular Ecology. 4 Credits.
This course will explore the biology of organisms by using molecular (nucleic acid and/or protein) techniques and data. It covers a wide variety of subdisciplines within Biology, including genetics, physiology, ecology, and evolution. This course will explore basic theory in population genetics, ecology, and evolution and cover DNA, RNA, and Protein techniques and their application to biological research.

BIOL 556. Population Genetics. 3 Credits.
An introduction to the principles of population genetics that address topics such as inheritance, genetic variation, fitness, natural selection, mutation, genetic drift, gene expression, and single- and multi-locus models of different types of selection. Human disease is addressed. Students will write a mock-grant proposal. Prerequisites: A Genetics course.

BIOL 557. General Virology. 3 Credits.
A basic course covering the history of virology, viral taxonomy, genetics, and the molecular biology and host responses to the major mammalian virus groups. Examples of recent impacts of viruses on human health such as influenza pandemics will also be covered. Prerequisites: courses in cell biology and genetics.

BIOL 560. Frontiers in Nanoscience and Nanotechnology. 1 Credit.
Review of the structure, synthesis and properties of key nano-materials and their impact on living systems. Prerequisite: graduate standing.

BIOL 561. Human Cadaver Dissection. 5 Credits.
Students will dissect a human cadaver fully and learn all of the major structures. The course will divided into three sections: backs and limbs, TAP (thorax, abdomen and pelvis), and head and neck. Instructor demonstrations include brain removal and dissection. Prerequisite: BIOL 241 or BIOL 251, or its equivalent, must be passed with a grade of C (2.0) or higher.

BIOL 562. Microbial Genetics. 3 Credits.
This course emphasizes the fundamental concepts of microbial genetics including the study of gene structure, gene regulation, operons, DNA replication, RNA biology, protein synthesis, plasmid biology, mobile genetic elements, and recombinant DNA technology. Prerequisites: Courses in cell biology, genetics and general microbiology.

BIOL 563. Cell Signaling in Host Pathogen Interactions. 3 Credits.
This course will emphasize cell dynamics including host and pathogen induced cellular signaling, the regulation of actin cytoskeleton rearrangement, and the modulation of host transcription and translation by different pathogens. Prerequisites: A cell biology course.

BIOL 564. Biomedical Applications of Low Temperature Plasmas. 3 Credits.
This course is cross listed between ECE and Biology. It is intended for senior undergraduate students and first year graduate students. The course contents are multidisciplinary, combining materials from engineering and the biological sciences. The course covers an introduction to the fundamentals of non-equilibrium plasmas, low temperature plasma sources, and cell biology. This is followed by a detailed discussion of the interaction of low temperature plasma with biological cells, both prokaryotes and eukaryotes. Potential applications in medicine such as wound healing, blood coagulation, sterilization, and the killing of various types of cancer cells will be covered.

BIOL 565. Biotechnology. 3 Credits.
This course provides an overview of how microbes are manipulated to solve practical problems through biotechnology. Topics to be covered include basic concepts in microbial technology, industrial microbiology, microbes in drug development, food microbiology, microbial interactions, gut microbiota, and metagenomics.

BIOL 566. Introduction to Mitigation and Adaptation. 3 Credits.
Students will be introduced to the science underpinning mitigation of human-induced changes in the Earth system, including but not limited to climate change and sea level rise, and adaptation to the impacts of these changes. The course will cover the environmental hazards and the opportunities and limitations for conservation, mitigation and adaptation. Cross listed with OEAS 566.

BIOL 567. Sustainability Leadership. 3 Credits.
In this class, students will discover what makes a leader for sustainability. They will consider a range of global and local crises from a leadership point of view in the context of sustainability science, which addresses the development of communities in a rapidly changing social, economic, and environmental system-of-systems environment. The course will be based on taking a problem-motivated and solution-focused approach to the challenges considered. The course includes a service learning project focusing on a leadership experience in solving a real-world environmental problem. Prerequisite: BIOL 566 or OEAS 566.

BIOL 570. Diseases that Changed our World. 3 Credits.
Despite advancements in the development of antimicrobials and vaccines and in securing clear water and food supplies, modern civilizations are not immune to epidemic diseases. This course will provide insight into the role of different technologies in the struggle to attain disease control and eradication and explore the challenge of forecasting emerging plagues, describing the nature and evolution of diseases and conveying their significance in shaping Western culture and civilization, their impact, their consequences, their costs, and the lessons learned.

BIOL 571. Marine Vertebrate Ecology, Management & Conservation. 3 Credits.
Course will explore the biology, diversity and major life history patterns of a suite of marine megafauna, including sea turtles, marine mammals, seabirds and sharks. Students will determine the major drivers behind large-scale declines of many marine megafauna species and be challenged to understand and attempt to solve conservation and management issues. Prerequisite: A Marine Biology course.

BIOL 574. Mushrooms. 4 Credits.
The identification, classification ecology, culture, and uses of mushrooms and other fleshy fungi. A field oriented course.
BIOL 575. Neurobiology, 3 Credits.
This course will focus on understanding brain structure as well as the morphology and function of the central nervous system in general. Fundamental processes such as neuron morphogenesis, guidance, polarity, migration, and growth cone motility will be emphasized. The cellular and molecular basis of neurological disorders also will be discussed. Prerequisites: BIOL 250 or BIOL 293 must be passed with a grade of "C" or higher or permission of instructor.

BIOL 578. Microbial Ecology, 3 Credits.
Study of the interactions between microorganisms, particularly bacteria, and their environment. Emphasis is placed on nutrient cycling and the influence of microbes on global mineral dynamics. The effects of physical and chemical factors on distribution and activity of microbes in their environments and applications of these interactions are studied (biotechnology). Prerequisites: a general microbiology course.

BIOL 579. Microbial Ecology Laboratory. 1 Credit.
A laboratory for measurement of microbial numbers and activity in natural environments. Pre- or corequisite: BIOL 578.

BIOL 580. Advanced Human Physiology Laboratory. 2 Credits.
A study of the cardiovascular, respiratory, nervous and digestive systems using mammals.

BIOL 581. Forensic and Medical Entomology, 5 Credits.
This course provides a comprehensive survey of the insects used in legal investigations and medically important insects. Topics covered include the taxonomy, morphology, physiology, reproductive and developmental biology, and ecology of these insects along with the diseases they may vector. Research techniques in forensic and medical entomology will be learned through both field and laboratory activities.

BIOL 582. Human and Veterinary Parasitology, 3 Credits.
The course will emphasize the principles of parasitism, including biology, physiology, genetics, morphology, and phylogeny of the major parasitic groups with a specific focus on the significant parasites of humans and animals of veterinary importance. The general biology of parasites including their life cycles, diagnosis, and treatment will be included as well. Pre- or corequisite: A cell biology course.

BIOL 590. Advanced Human Physiology, 4 Credits.
All major physiological systems with emphasis on normal physiology. Some clinical applications made but not stressed.

BIOL 596. Topics in Biology, 1-3 Credits.
A specially designed course concerning specific topics in the biological, environmental, or allied health fields. Prerequisites: Permission of the instructor.

BIOL 598. Independent Study in Biology, 1-3 Credits.
Supervised (non-lab/field) project selected to suit the needs of the individual student. Requires completion of formal scientific paper documented with appropriate primary technical literature (see GPD for details). Unstructured course. Prerequisites: permission of the GPD and permission of instructor.

BIOL 609. Special Readings in Biology, 3 Credits.
Reading and discussion course designed to explore a field of specific interest.

BIOL 620. Biometry, 4 Credits.
A first course, or a refresher course, in statistical methods and experimental design for graduate students in biology and the natural sciences. The focus is on application and hypothesis testing with examples drawn from the field of biology. The course requires a significant amount of work outside the classroom on homework exercises and an independent project. Prerequisites: A Statistics course.

BIOL 640. Microbial Toxins, 3 Credits.
This course will focus on the mechanisms of action of microbial toxins, including those affecting the host's nervous system, immune function, metabolism, protein synthesis, and homeostasis. The structure and function of representatives of several toxin types will be analyzed for their potential applications to biotechnology and medicine. Prerequisites: A general microbiology course required and a microbial pathogenesis course recommended.

BIOL 661. Topics in Biology, 1-3 Credits.
Supervised projects and practica selected to meet the specific objectives of the student.

BIOL 669. Internship in Biology, 3 Credits.
With approval of Advisory Committee.

BIOL 671. Molecular and Immunological Techniques, 4 Credits.
A lab-intensive course emphasizing current methods in molecular biology.

BIOL 672. Responsible Conduct in Research, 2 Credits.
Required of all graduate students admitted to Biology programs. The course will introduce students to the responsible conduct of science and scientific research.

BIOL 695. Topics in Biology, 1-3 Credits.
A specially designed course concerning specific topics in the biological, environmental or allied health fields.

BIOL 698. Research in Biology, 1-3 Credits.

BIOL 699. Thesis, 1-3 Credits.
This course is selected with the recommendation of the faculty advisor.

BIOL 700. Cardiovascular Physiology, 4 Credits.
This physiology course will focus solely on cardiovascular physiology. Lectures will focus on basic and advance cardiovascular principles. The laboratory will focus on the use of current cardiovascular research.

BIOL 701. Practical Computing for Biology, 3 Credits.
This hands-on training course emphasizes the use of general computing tools to work more effectively in the biological sciences. It integrates a broad range of powerful and flexible tools that are applicable to ecologists, molecular biologists, physiologists, and anyone who has struggled analyzing large or complex data sets. Text file manipulation with regular expressions, basic shell scripting, programming in Python and R, interaction with remote devices, and basic graphical concepts will be reviewed.

BIOL 702. Biomedical Sciences Journal Club, 1 Credit.
Review and discussion of current papers in the areas of biomedical sciences. Student presentation, discussions and readings in this field required.

BIOL 705. Advanced Microbiology, 4 Credits.
Investigate microbiology from historical perspectives to modern molecular microbiology; ecological and biomedical components; bacteria and viruses. Laboratory will involve designing experiments conducting and evaluating results. Prerequisite: A microbiology course.

BIOL 707. Ecosystem Ecology, 5 Credits.
Ecological principles at ecosystem level of biological organization. Discussion of energy flow, nutrient cycling, ecosystem stability and ecosystem modeling. Laboratory involves field trips and methods of measuring ecosystem parameters. Prerequisites: general ecology course.

BIOL 708. Ecological Sciences Seminar, 1 Credit.
A graduate seminar course in the ecological sciences. The format of the course depends on the faculty running the seminar, but most seminars involve student-led discussions on current research articles.

BIOL 712. Biological Microscopy, 4 Credits.
Lectures will cover theory and concepts of specimen preparation and operation of various microscopes used in the biological sciences. The laboratory experience will include specimen preparation to viewing. Prerequisites: permission of the instructor.

BIOL 714. Biomedical Sciences Laboratory, 2 Credits.
Three laboratory rotations (6 credits) are required by the curriculum. Prerequisite: approval of the program director.

BIOL 715. Biomedical Sciences Laboratory, 2 Credits.

BIOL 716. Endocrinology, 5 Credits.
The biochemical integration of hormones and related agents on vertebrate physiology with emphasis on human endocrinology. Recent literature will be stressed.

BIOL 720. Systematic Ichthyology, 3 Credits.
A systematic survey of fishes emphasizing life history, anatomy, identification and classification. Prerequisites: BIOL 520.
BIOL 724. Neurornuscular Physiology, 3 Credits.
This course will provide a comprehensive discussion of the physiological and chemical properties of nerve and muscle cells.

BIOL 730. Emerging Infectious Diseases, 3 Credits.
Discussion on current studies into new and reemerging infectious diseases with an examination of the infectious agent and factors involved in disease emergence, prevention and elimination. Prerequisite: A microbiology course.

BIOL 731. Systematics and Speciation, 3 Credits.
Principles of systematic biology and discussion of speciation theory, with emphasis on generation, analysis, and interpretation of taxonomic data and application of these data to a better understanding of classification and speciation processes. Modern theories of evolutionary biology and phylogenetics will be stressed. A research paper is required.

BIOL 732. GIS in the Life Sciences, 3 Credits.
This course is designed to introduce students to geographic information systems through examples and applications in the life sciences.

BIOL 745. Advanced Immunology, 3 Credits.
Current concepts in cellular and molecular immunology and host defense based on critical review of the primary literature.

BIOL 748. Functional genomics and proteomics in animal models, 3 Credits.
The purpose of this course is to show how animal models of human diseases can be created and analyzed using genomic and proteomic technologies. The course will overview high throughput methods of generating disease models in mice and describe ongoing efforts in this field. Attempts to identify molecular mechanisms of the disease will be presented with particular emphasis on drug target discovery. Pre- or corequisite: An immunology course.

BIOL 749. Biogeography, 3 Credits.
Emphasis on historical biogeography, utilizing both dispersal and vicariance models for explanations of the geographic distribution of organisms. Ecological explanations are also considered. Useful techniques for biogeographic analyses, such as comparison of area cladograms are discussed at length.

BIOL 750. Marine Benthic Ecology, 4 Credits.
Application of ecological principles at the community level to marine benthic environments. Discussion of community structure, animal-sediment relationships, roles of benthic communities in marine ecosystems. prerequisites: BIOL 515 or equivalent.

BIOL 751. Advanced Practices in Ethnobotany, 3 Credits.
The major objective of this course is modern methods used to study plants influencing human culture. Objectives include plant systematics and applications of DNA bar coding and fingerprinting; phytochemical techniques in drug discovery and food supplements; intellectual property rights; ecological methods for sustainable harvesting of natural products; the ethnoFotanical interview and questionnaire development; methods for studying crop origins, history, and development; archeobotany; mining historical data; and importance of identification, vouching, efficacy, and conservation. This course provides a survey of interdisciplinary methodologies used in modern ethnobotanical research. A multi-day field trip is a required component.

BIOL 754. Phylogeny and Molecular Lecture and Laboratory, 5 Credits.
This course is intended to be an introduction to the processes and procedures used to reconstruct the evolutionary history of living organisms. Topics include project planning, sampling strategies, molecular techniques, and analytical and tree-building programs used to infer phylogeny. Lab provides computer experience in multiple phylogenetic software packages. Prequisites: Instructor approval required.

BIOL 755. Molecular Genetics, 3 Credits.
Current molecular understanding of genetic processes will be reviewed. Applications to areas such as development and evolution will also be covered.

BIOL 756. Phylogeny and Molecular Systematics, 5 Credits.
This course is intended to be an introduction to the processes and procedures used to reconstruct the evolutionary history of living organisms. Topics include project planning, sampling strategies, molecular techniques, and analytical and tree-building programs used to infer phylogeny. Lab provides computer experience in multiple phylogenetic software packages.

BIOL 758. Molecular Ecology, 4 Credits.
Scientists are increasingly using molecular methods to help them address fundamental questions in the population ecology and evolution of biological species. This class will introduce graduate students to the basic concepts and methods in molecular evolution, phylogenetics and methods into their research. Theory and concepts from lecture will be illustrated through reading and discussion of current scientific literature. Students will also directly apply the course material to a class project investigating population structure of marine species from the tropical Indo-Pacific, for which they will be trained in methods of DNA extraction, PCR and sequencing. They will present their results orally in a mini-symposium at the end of the course. Prerequisites: BIOL 671.

BIOL 759. Foundations and Principles in Ecology, 3 Credits.
A survey of the seminal ideas and perspectives in historical and contemporary ecology. The course is designed to provide a broad overview of the important theoretical and conceptual paradigms in ecology.

BIOL 770. Advanced Study in Biology, 3 Credits.
Under the guidance of members of the graduate faculty and with the approval of the program track coordinator, the student will carry out in-depth studies of selected topics relevant to the area of specialization. Extensive surveys and analyses of the literature. Written reviews, comprehensive and synoptic, and oral presentations are required of each student.

BIOL 771. Vector-Borne Diseases, 3 Credits.
Study of the role of insects, ticks and other invertebrates in the transmission of disease. Different areas of disease transmission will be examined, including physiological and biochemical aspects of microbial survival in the vector and transmission to vertebrate hosts, as well as ecological aspects.

BIOL 772. Modeling and Simulation in the Life Sciences, 4 Credits.
Course is designed to introduce students to modeling and simulation techniques using examples and applications in the life sciences.

BIOL 775. Grant Writing for the Life Sciences, 3 Credits.
Provides students with the skills to write competitive grant proposals to both private and federal funding sources (emphasis on NIH and NSF). Students will learn how to find the most appropriate funding mechanisms and how to position themselves to be competitive. Different grant writing formats will be illustrated through proposal development projects.

BIOL 779. Gross Anatomy, 6 Credits.
An intense study of all systems from a regional approach. Extensive dissections required in lab. Clinical applications utilized. Prerequisites: An anatomy course recommended.

BIOL 795. Special Topics in Biology, 1-4 Credits.
Study of special topics. Prerequisite: permission of the instructor.

BIOL 800. Cardiovascular Physiology, 4 Credits.
This physiology course will focus solely on cardiovascular physiology. Lectures will focus on basic and advance cardiovascular principles. The laboratory will focus on the use of current cardiovascular research.

BIOL 801. Practical Computing for Biology, 3 Credits.
This hands-on training course emphasizes the use of general computing tools to work more effectively in the biological sciences. It integrates a broad range of powerful and flexible tools that are applicable to ecologists, molecular biologists, physiologists, and anyone who has struggled analyzing large or complex data sets. Text file manipulation with regular expressions, basic shell scripting, programming in Python and R, interaction with remote devices, and basic graphical concepts will be reviewed.

BIOL 802. Biomedical Sciences Journal Club, 1 Credit.
Review and discussion of current papers in the areas of biomedical sciences. Student presentation, discussions and readings in this field required.
BIOL 805. Advanced Microbiology. 4 Credits.
Investigate microbiology from historical perspectives to modern molecular microbiology; ecological and biomedical components: bacteria and viruses. Laboratory will involve designing experiments conducting and evaluating results. Prerequisite: A microbiology course.

BIOL 807. Ecosystem Ecology. 5 Credits.
Ecological principles at ecosystem level of biological organization. Discussion of energy flow, nutrient cycling, ecosystem stability and ecosystem modeling. Laboratory involves field trips and methods of measuring ecosystem parameters. Prerequisites: a general ecology course.

BIOL 808. Ecological Sciences Seminar. 1 Credit.
A graduate seminar course in the ecological sciences. The format of the course depends on the faculty running the seminar, but most seminars involve student-led discussions on current research articles.

BIOL 812. Biological Microscopy. 4 Credits.
Lectures will cover theory and concepts of specimen preparation and operation of various microscopes used in the biological sciences. The laboratory experience will include specimen preparation to viewing. Prerequisites: permission of the instructor.

BIOL 814. Biomedical Sciences Laboratory. 2 Credits.
Three laboratory rotations (6 credits) are required by the curriculum. Prerequisite: approval of the program director.

BIOL 816. Endocrinology. 5 Credits.
The biochemical integration of hormones and related agents on vertebrate physiology with emphasis on human endocrinology. Recent literature will be stressed.

BIOL 820. Systematic Ichthyology. 3 Credits.
A systematic survey of fishes emphasizing life history, anatomy, identification and classification. Prerequisites: BIOL 520.

BIOL 824. Neuromuscular Physiology. 3 Credits.
This course will provide a comprehensive discussion of the physiological and chemical properties of nerve and muscle cells.

BIOL 830. Emerging Infectious Diseases. 3 Credits.
Discussion on current studies into new and reemerging infectious diseases with an examination of the infectious agent and factors involved in disease emergence, prevention and elimination. Prerequisite: A microbiology course.

BIOL 831. Systematics and Speciation. 3 Credits.
Principles of systematic biology and discussion of speciation theory, with emphasis on generation, analysis, and interpretation of taxonomic data and application of these data to a better understanding of classification and speciation processes. Modern theories of evolutionary biology and phylogenetics will be stressed. A research paper is required.

BIOL 832. GIS in the Life Sciences. 3 Credits.
This course is designed to introduce students to geographic information systems through examples and applications in the life sciences.

BIOL 845. Advanced Immunology. 3 Credits.
Current concepts in cellular and molecular immunology and host defense based on critical review of the primary literature.

BIOL 848. Functional genomics and proteomics in animal models. 3 Credits.
The purpose of this course is to show how animal models of human diseases can be created and analyzed using genomic and proteomic technologies. The course will overview high throughput methods of generating disease models in mice and describe ongoing efforts in this field. Attempts to identify molecular mechanisms of the disease will be presented with particular emphasis on drug target discovery. Pre- or corequisite: An immunology course.

BIOL 849. Biogeography. 3 Credits.
Emphasis on historical biogeography, utilizing both dispersal and vicariance models for explanations of the geographic distribution of organisms. Ecological explanations are also considered. Useful techniques for biogeographic analyses, such as comparison of area cladograms are discussed at length.

BIOL 850. Marine Benthic Ecology. 4 Credits.
Application of ecological principles at the community level to marine benthic environments. Discussion of community structure, animal-sediment relationships, roles of benthic communities in marine ecosystems. Prerequisites: BIOL 515 or equivalent.

BIOL 851. Advanced Practices in Ethnobotany. 3 Credits.
The major objective of this course is modern methods used to study plants influencing human culture. Objectives include plant systematics and applications of DNA bar coding and fingerprinting; phytochemical techniques in drug discovery and food supplements; intellectual property rights; ecological methods for sustainable harvesting of natural products; the ethnobotanical interview and questionnaire development; methods for studying crop origins, history, and development; archeobotany; mining historical data; and importance of identification, vouching, efficacy, and conservation. This course provides a survey of interdisciplinary methodologies used in modern ethnobotanical research. A multi-day field trip is a required component.

BIOL 854. Phylogeny and Molecular Lecture and Laboratory. 5 Credits.
This course is intended to be an introduction to the processes and procedures used to reconstruct the evolutionary history of living organisms. Topics include project planning, sampling strategies, molecular techniques, and analytical and tree-building programs used to infer phylogeny. Lab provides computer experience in multiple phylogenetic software packages. Prerequisite: Instructor approval required.

BIOL 855. Molecular Genetics. 3 Credits.
Current molecular understanding of genetic processes will be reviewed. Applications to areas such as development and evolution will also be covered.

BIOL 856. Phylogeny and Molecular Systematics. 5 Credits.
This course is intended to be an introduction to the processes and procedures used to reconstruct the evolutionary history of living organisms. Topics include project planning, sampling strategies, molecular techniques, and analytical and tree-building programs used to infer phylogeny. Lab provides computer experience in multiple phylogenetic software packages.

BIOL 858. Molecular Ecology. 4 Credits.
Scientist are increasingly using molecular methods to help them address fundamental questions in the population ecology and evolution of biological species. This class will introduce graduate students to the basic concepts and methods in molecular evolution, phylogenetics and methods into their research. Theory and concepts from lecture will be illustrated through reading and discussion of current scientific literature. Students will also directly apply the course material to a class project investigating population structure of marine species from the tropical Indo-Pacific, for which they will be trained in methods of DNA extraction, PCR and sequencing. They will present their results orally in a mini-symposium at the end of the course. Prerequisites: BIOL 671.

BIOL 859. Foundations and Principles in Ecology. 3 Credits.
A survey of the seminal ideas and perspectives in historical and contemporary ecology. The course is designed to provide a broad overview of the important theoretical and conceptual paradigms in ecology.

BIOL 861. Ecological Sciences Internship. 3-6 Credits.
Internship experience. Prerequisites: approval of advisory committee.

BIOL 871. Vector-Borne Diseases. 3 Credits.
Study of the role of insects, ticks and other invertebrates in the transmission of disease. Different areas of disease transmission will be examined, including physiological and biochemical aspects of microbial survival in the vector and transmission to vertebrate hosts, as well as ecological aspects.

BIOL 872. Modeling and Simulation in Life Sciences. 4 Credits.
Course is designed to introduce students to modeling and simulation techniques using examples and applications in the life sciences.
BIOL 875. Grant Writing for the Life Sciences. 3 Credits.
Provides students with the skills to write competitive grant proposals to both private and federal funding sources (emphasis on NIH and NSF). Students will learn how to find the most appropriate funding mechanisms and how to position themselves to be competitive. Different grant writing formats will be illustrated through proposal development projects.

BIOL 880. Advanced Study in Biology. 3 Credits.
Under the guidance of members of the graduate faculty and with the approval of the program track coordinator, the student will carry out in-depth studies of selected topics relevant to the area of specialization. Extensive surveys and analyses of the literature. Written reviews, comprehensive and synoptic, and oral presentations are required of each student.

BIOL 889. Gross Anatomy, 6 Credits.
An intense study of all systems from a regional approach. Extensive dissections required in lab. Clinical applications utilized. Prerequisites: Anatomy and Physiology course.

BIOL 895. Special Topics in Biology. 1-4 Credits.
Study of special topics. Prerequisite: permission of the instructor.

BIOL 898. Research in Biology. 1-6 Credits.

BIOL 899. Dissertation. 1-6 Credits.

BIOL 999. Doctoral Graduate Credit. 1 Credit.
This course is a pass/fail course doctoral students may take to maintain active status after successfully passing the candidacy examination. All doctoral students are required to be registered for at least one graduate credit hour every semester until their graduation.